
Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide
version 1.10.0

Web Server, LLC

Jul 07, 2025

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

Contents

1 Annotation 2

2 General Information 3

3 Configuration 5
3.1 General Information . 5

3.1.1 Configuration Files . 5
3.1.2 Runtime Control . 8
3.1.3 Connections, Sessions, Requests, Logs . 11

3.2 References and Indexes . 19
3.2.1 Built-in Modules . 19
3.2.2 Built-in Variables . 426
3.2.3 Quick Access to Angie Directives and Variables 429

3.3 Instructions . 431
3.3.1 Migrating from nginx to Angie . 431
3.3.2 ACME Configuration . 435
3.3.3 SSL Configuration . 444
3.3.4 Console Light Web Monitoring Panel . 448
3.3.5 Configuring the Prometheus dashboard . 463

4 Troubleshooting 465
4.1 Debug Logging . 465

4.1.1 Directive Location . 467
4.1.2 Logging Specific Addresses . 468
4.1.3 Cyclic Memory Buffer . 468

4.2 Core Dumps . 468
4.2.1 Linux: systemd . 469
4.2.2 Linux: Manual Configuration . 469
4.2.3 FreeBSD . 470

5 Intellectual Property Rights 471

Index 472

i

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

og:description
Information for operating Angie PRO software

Contents 1

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

CHAPTER 1

Annotation

This document contains information necessary for operating Angie PRO software.

2

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

CHAPTER 2

General Information

Angie PRO is the only commercial web server developed and localized in Russia.

A web server is a class of software that provides access to network resources via the HTTP protocol to
end users. Angie PRO, for example, can be used to operate websites, mobile applications, self-service
kiosks in the subway, and multimedia systems on long-distance trains. Every time a user opens a website,
uses a mobile application, interacts with a self-service kiosk in the subway, or even with a multimedia
system on the "Sapsan" train, the user's request can be processed by Angie PRO.

Angie PRO is:

• A general-purpose web server. Written in C.

• An L4-L7 load balancer. Allows load balancing between servers for both TCP/UDP protocols
and HTTP.

• A proxy and caching server. Enables faster operation of web services through a flexible caching
mechanism.

• Available on all popular platforms. Compiled and tested on Alpine, Debian, Oracle, RED OS,
Rocky, and Ubuntu.

• High performance. One of the most efficient web servers in the world.

Why choose Angie PRO:

• Compatibility with NGINX OSS. Angie PRO is fully compatible with Nginx, allowing any
existing Nginx user to transition to Angie PRO without significant costs or service downtime.

• Enhanced statistics and real-time monitoring. Angie PRO offers complete real-time server
load monitoring, enabling dynamic configuration management based on load profiles and ensuring
full service availability.

• Dynamic configuration of proxied server groups. Allows management of proxied server
group settings through a convenient REST interface without service interruption.

• Cache element removal. Provides the ability to remove cache elements via a user-friendly API
without service downtime.

• Active health checks for proxied servers. Checks for "liveness" and proxies only to those
groups of proxied servers that respond according to a specified algorithm.

• Dynamic key-value storage. Enables dynamic management of Angie PRO configuration vari-
ables via HTTP API.

3

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

• Dynamic DNS updates.

• Session-affinity proxying.

• Repository with dynamic third-party modules. Angie PRO supports most NGINX third-
party modules and allows for seamless installation, guaranteeing functionality and support.

• Shared memory zone synchronization. Capability to use cache zones, limit_req, etc., in the
Angie PRO cluster.

• Hiding or personal branding of the server name in response headers. Ability to change
or hide the name and version of the web server from users.

A list of foreign software with similar functional characteristics to Angie PRO includes Nginx, Nginx Plus,
Apache, Envoy, products utilizing NGINX solutions (OpenResty, Tengine, Cloudflare), and Yandex's
cloud solutions.

4

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

CHAPTER 3

Configuration

This page contains articles, references, indexes, and instructions for configuring Angie.

3.1 General Information

These articles cover installation and configuration of Angie, starting and stopping the web server, man-
aging it, as well as various aspects of request processing and interaction with other servers.

3.1.1 Configuration Files
Angie uses a text-based configuration file. By default, this file is named angie.conf and is located
according to the --conf-path build parameter, typically in the /etc/angie directory.

A configuration file generally consists of the following contexts:

• events – General connection processing

• http – HTTP traffic

• mail – Mail traffic

• stream – TCP and UDP traffic

• wasm_modules – WASM runtime

Directives that are placed outside of these contexts are considered to be in the main context:

user angie; # a directive in the 'main' context

events {

configuration of connection processing
}

http {

Configuration specific to HTTP and affecting all virtual servers

server {

5

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

configuration of HTTP virtual server 1
location /one {

configuration for processing URIs starting with '/one'
}
location /two {

configuration for processing URIs starting with '/two'
}

}

server {

configuration of HTTP virtual server 2
}

}

stream {

Configuration specific to TCP/UDP and affecting all virtual servers
server {

configuration of TCP virtual server 1
}

}

To simplify configuration management, we recommend using the include directive in the main angie.
conf file to reference the contents of feature-specific files:

include /etc/angie/http.d/*.conf;
include /etc/angie/stream.d/*.conf;

Inheritance

In general, a child context (one that is contained within another context, which is considered its parent)
inherits the settings of directives defined at the parent level. Some directives can appear in multiple
contexts; in such cases, you can override the settings inherited from the parent by including the directive
in the child context.

Syntax

Measurement Units

You can specify sizes using the following units:

No suffix Bytes
k, K Kilobytes
m, M Megabytes
g, G Gigabytes

For example: 1024, 8k, 1m, 16g.

Time intervals can be specified in milliseconds, seconds, minutes, hours, days, and so on, using the
following suffixes:

3.1. General Information 6

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ms Milliseconds
s Seconds
m Minutes
h Hours
d Days
w Weeks
M Months (assumed equal to 30 days)
y Years (assumed equal to 365 days)

Multiple units can be combined in a single value by specifying them in order from the most significant
to the least significant, optionally separated by whitespace. For example, "1h 30m" specifies the same
duration as "90m" or "5400s". A value without a suffix is interpreted as seconds. It is recommended to
always specify a suffix.

Some time intervals can only be specified with second-level resolution.

Directives

Each directive consists of a name and a set of parameters. If any part of a directive needs to contain
spaces, it should be enclosed in quotes or escape the spaces:

add_header X-MyHeader "foo bar";
add_header X-MyHeader foo\ bar;

If a named parameter needs spaces and you use quotes, its name must be enclosed in quotes as well:

server example.com "sid=server 1";

Setting up Hashes

To efficiently process static sets of data, such as server names, the map directive values, MIME types,
and request header names, Angie utilizes hash tables. During startup and each reconfiguration, Angie
determines the optimal size for these hash tables to ensure that the bucket size, which stores keys with
identical hash values, does not exceed the configured parameter (hash bucket size). The table size is
measured in buckets and is adjusted until it exceeds the hash max size parameter. Most hash tables
have corresponding directives to adjust these parameters, such as server_names_hash_max_size and
server_names_hash_bucket_size for server names.

The hash bucket size parameter is aligned to a multiple of the processor's cache line size. This alignment
enhances key search efficiency on modern processors by reducing the number of memory accesses. If
the hash bucket size is equal to one cache line size, the maximum number of memory accesses during
a key search will be two: one to compute the bucket address and another to search inside the bucket.
Therefore, if Angie indicates that either the hash max size or hash bucket size should be increased, start
by increasing the hash max size.

Reloading Configuration

To apply changes to the configuration file, it must be reloaded. You can either restart the Angie process
with a configuration syntax check beforehand:

$ sudo angie -t && sudo service angie restart

Alternatively, you can reload the service to apply the new configuration without interrupting the pro-
cessing of current requests:

$ sudo angie -t && sudo service angie reload

3.1. General Information 7

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

3.1.2 Runtime Control
To start Angie, use systemd with the following command:

$ sudo service angie start

It is recommended to check the configuration syntax beforehand. Here is how:

$ sudo angie -t && sudo service angie start

To reload the configuration:

$ sudo angie -t && sudo service angie reload

To stop Angie:

$ sudo service angie stop

After installation, run the following command to ensure that Angie is up and running:

$ curl localhost:80

ò Note

The methods for running the open-source version of Angie may vary depending on the installation
method.

Angie has one master process and several worker processes. The master process is responsible for reading
and evaluating the configuration and maintaining the worker processes. Worker processes handle the
actual request processing. Angie uses an event-based model and OS-dependent mechanisms to efficiently
distribute requests among the worker processes. The number of worker processes is defined in the
configuration file and may be either fixed for a given configuration or automatically adjusted based on
the number of available CPU cores (see worker_processes).

When configured, Angie will also flush certain shared memory zones (currently, the keys_zone in
proxy_cache_path) to the disk before exiting, so a newly started master process can restore them with
improved performance. If the restore fails due to a change in zone size, binary version incompatibility,
or other reasons, Angie will log an alert (failed to restore zone at address) and will not use the
zone restore mechanism.

Using Signals

Angie can also be controlled using signals. By default, the process ID of the master process is written
to the file /run/angie.pid. This filename can be changed at configuration time or in angie.conf using
the pid directive. The master process supports the following signals:

TERM, INT Fast shutdown
QUIT Graceful shutdown
HUP Reload configuration, update time zone (only for FreeBSD and Linux), start new

worker processes with the updated configuration, gracefully shut down old worker
processes

USR1 Reopen log files
USR2 Upgrade the executable file
WINCH Graceful shutdown of worker processes

You can send signals using kill:

3.1. General Information 8

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$ sudo kill -QUIT $(cat /run/angie.pid)

Individual worker processes can also be controlled using signals, although this is optional. The supported
signals are:

TERM, INT Fast shutdown
QUIT Graceful shutdown
USR1 Reopen log files
WINCH Abnormal termination for debugging (requires debug_points to be enabled)

Changing Configuration

In order for Angie to re-read the configuration file, a HUP signal should be sent to the master process. The
master process first checks the syntax validity and then attempts to apply the new configuration, which
includes opening new log files and listen sockets. If applying the new configuration fails, the master
process rolls back the changes and continues operating with the old configuration. If the application
succeeds, the master process starts new worker processes and sends messages to the old worker processes,
requesting them to shut down gracefully . The old worker processes close their listen sockets and continue
to service existing clients. After all clients have been served, the old worker processes are shut down.

Angie tracks configuration changes for each process. Generation numbers start at 1 when the server
is first started. These numbers are incremented with each configuration reload and are visible in the
process titles:

$ sudo angie
$ ps aux | grep angie

angie: master process v1.10.0 #1 [angie]
angie: worker process #1

After a successful configuration reload (regardless of whether there are actual changes), Angie increments
the generation number for processes that received the new configuration:

$ sudo kill -HUP $(cat /run/angie.pid)
$ ps aux | grep angie

angie: master process v1.10.0 #2 [angie]
angie: worker process #2

If any worker processes from previous generations continue to operate, they will become immediately
visible:

$ ps aux | grep angie

angie: worker process #1
angie: worker process #2

ò Note

Do not confuse the configuration generation number with a 'process number'; Angie does not use
continuous process numbering for practical purposes.

3.1. General Information 9

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Rotating Log Files

To rotate log files, first rename the files. Then, send a USR1 signal to the master process. The master
process will re-open all currently open log files and assign them to an unprivileged user under which the
worker processes are running. After successfully re-opening the files, the master process closes all open
files and notifies the worker processes to re-open their log files. Worker processes will also open the new
files and close the old ones immediately. As a result, the old files become available for post-processing,
such as compression, almost immediately.

On-the-fly Executable Upgrade

To upgrade the server executable, first replace the old executable file with the new one. Then, send a
USR2 signal to the master process. The master process will rename its current file with the process ID
to a new file with the .oldbin suffix, e.g., /usr/local/angie/logs/angie.pid.oldbin, and then start
the new executable, which in turn starts new worker processes.

Note that the old master process does not close its listen sockets and can be managed to restart its
worker processes if necessary. If the new executable does not perform as expected, you can take one of
the following actions:

• Send the HUP signal to the old master process. This will start new worker processes without re-
reading the configuration. You can then shut down all new processes gracefully by sending the
QUIT signal to the new master process.

• Send the TERM signal to the new master process. It will send a message to its worker processes,
requesting them to exit immediately. If any processes do not exit, send the KILL signal to force
them to exit. When the new master process exits, the old master process will automatically start
new worker processes.

If the new master process exits, the old master process will remove the .oldbin suffix from the file name
with the process ID.

If the upgrade is successful, send the QUIT signal to the old master process, and only the new processes
will remain.

When configured, Angie will also flush certain shared memory zones (currently, the keys_zone in
proxy_cache_path) to the disk before upgrading, so a newly started master process can restore them
with improved performance. If the restore fails due to a change in zone size, binary version incompat-
ibility, or other reasons, Angie will log an alert (failed to restore zone at address) and will not
use the zone restore mechanism.

3.1. General Information 10

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Command-Line Options

-?, -h Display help for command-line parameters, then exit.
--build-env Display auxiliary information about the build environment, then exit.
-c file Use file as the configuration file instead of the default file.
-e file Use file as the error log file instead of the default file. The special value stderr

specifies the standard error output.
-g directives Apply additional global configuration directives, for example: angie -g "pid /

var/run/angie.pid; worker_processes `sysctl -n hw.ncpu`;".
-m, -M Display a list of built-in (-m) or built-in and loaded (-M) modules, then exit.
-p prefix Use the specified prefix path for angie (the directory where server files are lo-

cated; the default is /usr/local/angie/).
-q Display only error messages if -t or -T is set; otherwise, has no effect.
-s signal Send a signal to the master process: stop, quit, reopen, reload, and so on.
-t Test the configuration file, then exit. Angie checks the configuration syntax,

recursively including files mentioned in it.
-T Same as -t, but also outputs the summary configuration to standard output after

recursively including all files mentioned in the configuration.
-v Display the Angie version, then exit.
-V Display the Angie version, compiler version, build time and the build parameters

used, then exit.

3.1.3 Connections, Sessions, Requests, Logs

Connection processing mechanisms

Angie supports various connection processing methods. The availability of a specific method depends on
the platform being used. On platforms that support multiple methods, Angie typically selects the most
efficient method automatically. However, if necessary, a connection processing method can be explicitly
chosen using the use directive.

The following connection processing methods are available:

Method Description

select A standard method. The supporting module is built automatically on plat-
forms that do not have more efficient methods. The --with-select_module and
--without-select_module build options can be used to forcibly enable or disable
the building of this module.

poll A standard method. The supporting module is built automatically on plat-
forms that do not have more efficient methods. The --with-poll_module and
--without-poll_module build options can be used to forcibly enable or disable the
building of this module.

kqueue An efficient method available on FreeBSD 4.1+, OpenBSD 2.9+, NetBSD 2.0, and
macOS.

epoll An efficient method available on Linux 2.6+.
/dev/poll An efficient method available on Solaris 7 11/99+, HP/UX 11.22+ (eventport), IRIX

6.5.15+, and Tru64 UNIX 5.1A+.
eventport The event ports method is available on Solaris 10+. (Due to known issues, using the

/dev/poll method is recommended instead.)

HTTP request processing

An HTTP request goes through a series of phases, where a specific type of processing is performed at
each phase.

3.1. General Information 11

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Post-read The initial phase. The RealIP module is invoked during this phase.
Server-rewrite The phase where directives from the Rewrite module, defined in a server block

(but outside a location block), are processed.
Find-config A special phase where a location is selected based on the request URI.
Rewrite Similar to the Server-rewrite phase, but it applies to rewrite rules defined

within the location block selected in the previous phase.
Post-rewrite A special phase where the request is redirected to a new location, as in the

Find-config phase, if its URI was modified during the Rewrite phase.
Preaccess During this phase, standard Angie modules like Limit Req register their handlers.
Access The phase where the client's authorization to make the request is verified, typi-

cally by invoking standard Angie modules such as Auth Basic.
Post-access A special phase where the satisfy any directive is processed.
Precontent Standard module directives, such as try_files and mirror , register their handlers

during this phase.
Content The phase where the response is usually generated. Multiple standard Angie

modules register their handlers at this stage, including Index . The proxy_pass,
fastcgi_pass, uwsgi_pass, scgi_pass and grpc_pass directives are also handled
here.
Handlers are called sequentially until one of them produces the output.

Log The final phase, where request logging is performed. Currently, only the Log
module registers its handler at this stage for access logging.

TCP/UDP session processing

A TCP/UDP session from a client goes through a series of phases, where a specific type of processing is
performed at each phase:

Post-accept The initial phase after accepting a client connection. The RealIP module is
invoked at this phase.

Pre-access A preliminary phase for checking access. The Set modules are invoked during
this phase.

Access The phase for limiting client access before actual data processing. The Access
module is invoked at this stage.

SSL The phase where TLS/SSL termination occurs. The SSL module is invoked
during this phase.

Preread The phase for reading initial bytes of data into the preread buffer to allow modules
such as SSL Preread to analyze the data before processing.

Content A mandatory phase where the data is actually processed, typically involving the
Return module to send a response to the client. The proxy_pass directive is also
handled here.

Log The final phase where the outcome of client session processing is recorded. The
Log module is invoked at this phase.

Processing requests

Virtual server selection

Initially, a connection is created within the context of a default server. The server name can then be
determined in the following stages of request processing, each of which is involved in the selection of
server configuration:

• During the SSL handshake, in advance, according to the SNI.

• After processing the request line.

• After processing the Host header field.

3.1. General Information 12

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

If the server name is not determined after processing the request line or the Host header field, Angie will
use an empty name as the server name.

At each of these stages, different server configurations may be applied. Therefore, certain directives
should be specified with caution:

• In the case of the ssl_protocols directive, the protocol list is set by the OpenSSL library before the
server configuration is applied according to the name requested through SNI. As a result, protocols
should only be specified for the default server.

• The client_header_buffer_size and merge_slashes directives are applied before reading the re-
quest line. Therefore, these directives use either the default server configuration or the server
configuration chosen by SNI.

• In the case of the ignore_invalid_headers, large_client_header_buffers, and under-
scores_in_headers directives, which are involved in processing request header fields, the server
configuration additionally depends on whether it was updated according to the request line or the
Host header field.

• An error response is handled using the error_page directive in the server that is currently processing
the request.

Name-based virtual servers

Angie first determines which server should handle the request. Consider a simple configuration where
all three virtual servers listen on port 80:

server {

listen 80;
server_name example.org www.example.org;
...

}

server {

listen 80;
server_name example.net www.example.net;
...

}

server {

listen 80;
server_name example.com www.example.com;
...

}

In this configuration, Angie determines which server should handle the request based solely on the Host
header field. If the value of this header does not match any server name or if the request does not contain
this header field, Angie will route the request to the default server for this port. In the configuration
above, the default server is the first one — which is Angie's standard default behavior. It can also be
explicitly specified which server should be the default using the default_server parameter in the listen
directive:

server {

listen 80 default_server;
server_name example.net www.example.net;
...

}

3.1. General Information 13

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ò Note

Note that the default server is a property of the listen socket, not of the server name.

Internationalized names

Internationalized domain names (IDNs) should be specified using an ASCII (Punycode) representation
in the server_name directive:

server {

listen 80;
server_name xn--e1afmkfd.xn--80akhbyknj4f; # пример.испытание
...

}

Preventing requests with undefined server names

If requests without the Host header field should not be allowed, a server that simply drops such requests
can be defined:

server {

listen 80;
server_name "";
return 444;

}

In this configuration, the server name is set to an empty string, which matches requests without the
Host header field. A special non-standard code 444 is then returned, which closes the connection.

Combining name-based and IP-based virtual servers

Let's examine a more complex configuration where some virtual servers listen on different addresses:

server {

listen 192.168.1.1:80;
server_name example.org www.example.org;
...

}

server {

listen 192.168.1.1:80;
server_name example.net www.example.net;
...

}

server {

listen 192.168.1.2:80;
server_name example.com www.example.com;
...

}

In this configuration, Angie first tests the IP address and port of the request against the listen directives

3.1. General Information 14

https://en.wikipedia.org/wiki/Internationalized_domain_name

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

of the server blocks. It then tests the Host header field of the request against the server_name entries
of the server blocks that matched the IP address and port. If the server name is not found, the request
will be processed by the default server. For example, a request for www.example.com received on port
192.168.1.1:80 will be handled by the default server for that port — i.e., by the first server — since
www.example.com is not defined for this port.

As previously mentioned, a default server is a property of the listen port, and different default servers
may be defined for different ports:

server {

listen 192.168.1.1:80;
server_name example.org www.example.org;
...

}

server {

listen 192.168.1.1:80 default_server;
server_name example.net www.example.net;
...

}

server {

listen 192.168.1.2:80 default_server;
server_name example.com www.example.com;
...

}

Choosing locations

Consider a simple PHP website configuration:

server {

listen 80;
server_name example.org www.example.org;
root /data/www;

location / {

index index.html index.php;
}

location ~* \.(gif|jpg|png)$ {

expires 30d;
}

location ~ \.php$ {

fastcgi_pass localhost:9000;
fastcgi_param SCRIPT_FILENAME
$document_root$fastcgi_script_name;
include fastcgi_params;

}
}

3.1. General Information 15

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Angie first searches for the most specific prefix location given by literal strings, regardless of their listed
order. In the configuration above, the only prefix location is location /, which matches any request
and will be used as a last resort. Angie then checks locations defined by regular expressions in the order
they appear in the configuration file. The first matching expression stops the search, and Angie will
use that location. If no regular expression matches a request, Angie will use the most specific prefix
location found earlier.

ò Note

Locations of all types test only the URI part of the request line, excluding arguments. This is because
arguments in the query string can be specified in various ways, for example:

• /index.php?user=john&page=1

• /index.php?page=1&user=john

Additionally, query strings may contain any number of parameters:

• /index.php?page=1&something+else&user=john

Now let's look at how requests would be processed in the configuration above:

• The request /logo.gif is first matched by the prefix location / and then by the regular expression
.(gif|jpg|png)$. Therefore, it is handled by the latter location. Using the directive root /data/
www, the request is mapped to the file /data/www/logo.gif, and the file is sent to the client.

• The request /index.php is also initially matched by the prefix location / and then by the reg-
ular expression .(php)$. Consequently, it is handled by the latter location, and the request is
passed to a FastCGI server listening on localhost:9000. The fastcgi_param directive sets the
FastCGI parameter SCRIPT_FILENAME to /data/www/index.php, and the FastCGI server executes
the file. The variable $document_root is set to the value of the root directive, and the variable
$fastcgi_script_name is set to the request URI, i.e., /index.php.

• The request /about.html is matched only by the prefix location /, so it is handled in this location.
Using the directive root /data/www, the request is mapped to the file /data/www/about.html,
and the file is sent to the client.

Handling the request / is more complex. It is matched only by the prefix location /, so it is handled by
this location. The index directive then tests for the existence of index files according to its parameters
and the root /data/www directive. If the file /data/www/index.html does not exist but the file /data/
www/index.php does, the directive performs an internal redirect to /index.php, and Angie searches the
locations again as if the request had been sent by a client. As previously mentioned, the redirected
request will eventually be handled by the FastCGI server.

Proxying and Load Balancing

One common use of Angie is to set it up as a proxy server. In this role, Angie receives requests, forwards
them to the proxied servers, retrieves responses from those servers, and sends the responses back to the
clients.

A simple proxy server:

server {

location / {

proxy_pass http://backend:8080;
}

The proxy_pass directive instructs Angie to pass client requests to the backend backend:8080 (the
proxied server). There are many additional directives available for further configuring a proxy connection.

3.1. General Information 16

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

FastCGI Proxying

Angie can be used to route requests to FastCGI servers that run applications built with various frame-
works and programming languages, such as PHP.

The most basic Angie configuration for working with a FastCGI server involves using the fastcgi_pass
directive instead of the proxy_pass directive, along with fastcgi_param directives to set parameters
passed to the FastCGI server. Suppose the FastCGI server is accessible on localhost:9000. In PHP,
the SCRIPT_FILENAME parameter is used to determine the script name, and the QUERY_STRING parameter
is used to pass request parameters. The resulting configuration would be:

server {

location / {

fastcgi_pass localhost:9000;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
fastcgi_param QUERY_STRING $query_string;

}

location ~ \.(gif|jpg|png)$ {

root /data/images;
}

}

This configuration sets up a server that routes all requests, except those for static images, to the proxied
server operating on localhost:9000 via the FastCGI protocol.

WebSocket Proxying

To upgrade a connection from HTTP/1.1 to WebSocket, the protocol switch mechanism available in
HTTP/1.1 is used.

However, there is a subtlety: since the Upgrade header is a hop-by-hop header, it is not passed from
the client to the proxied server. With forward proxying, clients may use the CONNECT method to
circumvent this issue. This approach does not work with reverse proxying, as clients are unaware of any
proxy servers, and special processing on the proxy server is required.

Angie implements a special mode of operation that allows setting up a tunnel between a client and a
proxied server if the proxied server returns a response with code 101 (Switching Protocols), and the client
requests a protocol switch via the Upgrade header in the request.

As mentioned, hop-by-hop headers, including Upgrade and Connection, are not passed from the client
to the proxied server. Therefore, for the proxied server to be aware of the client's intention to switch to
the WebSocket protocol, these headers must be explicitly passed:

location /chat/ {

proxy_pass http://backend;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";

}

A more sophisticated example demonstrates how the value of the Connection header field in a request
to the proxied server depends on the presence of the Upgrade field in the client request header:

http {

map $http_upgrade $connection_upgrade {

3.1. General Information 17

https://datatracker.ietf.org/doc/html/rfc2616#section-14.42
https://datatracker.ietf.org/doc/html/rfc2616#section-13.5.1

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

default upgrade;
'' close;

}

server {

...

location /chat/ {

proxy_pass http://backend;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade;

}
}

}

By default, the connection will be closed if the proxied server does not transmit any data within 60
seconds. This timeout can be increased using the proxy_read_timeout directive. Alternatively, the
proxied server can be configured to periodically send WebSocket ping frames to reset the timeout and
check if the connection is still active.

Load Balancing

Load balancing across multiple application instances is a widely used technique to optimize resource
utilization, maximize throughput, reduce latency, and ensure fault-tolerant configurations.

Angie can be used as a highly efficient HTTP load balancer to distribute traffic to multiple application
servers, thereby enhancing the performance, scalability, and reliability of web applications.

The simplest configuration for load balancing with Angie might look like this:

http {

upstream myapp1 {

server srv1.example.com;
server srv2.example.com;
server srv3.example.com;

}

server {

listen 80;

location / {

proxy_pass http://myapp1;
}

}
}

In the example above, three instances of the same application are running on srv1 through srv3. When
a load balancing method is not explicitly configured, it defaults to round-robin. Other supported load
balancing mechanisms include: weight , least_conn, and ip_hash. The reverse proxy implementation in
Angie also supports in-band (or passive) server health checks. These are configured using the max_fails
and fail_timeout directives within the server block in the upstream context.

3.1. General Information 18

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Logging

ò Note

In addition to the options listed here, you can also enable the debugging log .

Syslog

The error_log and access_log directives support logging to syslog. The following parameters are used
to configure logging to syslog:

server=address Specifies the address of a syslog server. The address can be a domain name or
an IP address, with an optional port, or a UNIX domain socket path specified
after the "unix:" prefix. If the port is not specified, UDP port 514 is used. If a
domain name resolves to multiple IP addresses, the first resolved address is used.

facility=string Sets the facility for syslog messages, as defined in RFC 3164. Possible facil-
ities include: "kern", "user", "mail", "daemon", "auth", "intern", "lpr",
"news", "uucp", "clock", "authpriv", "ftp", "ntp", "audit", "alert",
"cron", "local0".."local7". The default is "local7".

severity=string Defines the severity level of syslog messages for access_log , as specified in RFC
3164. Possible values are the same as those for the second parameter (level) of
the error_log directive. The default is "info". The severity of error messages is
determined by Angie, so this parameter is ignored in the error_log directive.

tag=string Sets the tag for syslog messages. The default tag is "angie".
nohostname Disables the addition of the hostname field in the syslog message header.

Example syslog configuration:

error_log syslog:server=192.168.1.1 debug;

access_log syslog:server=unix:/var/log/angie.sock,nohostname;
access_log syslog:server=[2001:db8::1]:12345,facility=local7,tag=angie,severity=info␣
→˓combined;

ò Note

Syslog entries are reported no more than once per second to prevent flooding.

3.2 References and Indexes

These summary sections provide reference information on built-in modules, examples of their configura-
tion, as well as supported directives and variables.

3.2.1 Built-in Modules
This guide describes Angie's built-in modules, provides configuration examples, lists their directives and
parameters, as well as built-in variables.

Core Module

The module provides essential functionality and configuration directives necessary for the basic operation
of the server, and handles critical tasks such as managing worker processes, configuring event-driven
models, and processing incoming connections and requests. It includes key directives for setting up the
main process, error logging, and controlling the behavior of the server at a low level.

3.2. References and Indexes 19

https://datatracker.ietf.org/doc/html/rfc3164.html
https://datatracker.ietf.org/doc/html/rfc3164.html
https://datatracker.ietf.org/doc/html/rfc3164.html

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Configuration Example

user www www;
worker_processes 2;

error_log /var/log/error.log info;

events {

use kqueue; worker_connections 2048;
}

Directives

accept_mutex

Syntax accept_mutex on | off;
Default accept_mutex off;
Context events

When accept_mutex is enabled, worker processes will accept new connections in turn. Without this
setting, all worker processes are notified of new connections, which can lead to inefficient use of system
resources if the volume of new connections is low.

ò Note

There is no need to enable accept_mutex on systems that support the EPOLLEXCLUSIVE flag or when
using the reuseport directive.

accept_mutex_delay

Syntax accept_mutex_delay time;
Default accept_mutex_delay 500ms;
Context events

If accept_mutex is enabled, this directive specifies the maximum time a worker process will wait to
continue accepting new connections while another worker process is already handling new connections.

daemon

Syntax daemon on | off;
Default daemon on;
Context main

Determines whether Angie should run as a daemon. This is primarily used during development.

debug_connection

Syntax debug_connection address | CIDR | unix:;
Default —
Context events

3.2. References and Indexes 20

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Enables debugging logs for specific client connections. Other connections will use the logging level set
by the error_log directive. You can specify connections by IPv4 or IPv6 address, network, or hostname.
For connections using UNIX domain sockets, use the unix: parameter to enable debugging logs.

events {

debug_connection 127.0.0.1;
debug_connection localhost;
debug_connection 192.0.2.0/24;
debug_connection ::1;
debug_connection 2001:0db8::/32;
debug_connection unix:;
...

}

s Important

For this directive to work, Angie must be built with debugging log enabled.

debug_points

Syntax debug_points abort | stop;
Default —
Context main

This directive is used for debugging.

When an internal error occurs, such as a socket leak during worker process restarts, enabling
debug_points will either create a core file (abort) or stop the process (stop) for further analysis with
a system debugger.

env

Syntax env variable[=value];
Default env TZ;
Context main

By default, Angie removes all environment variables inherited from its parent process except for the TZ
variable. This directive allows you to preserve some inherited variables, modify their values, or create
new environment variables.

These variables are then:

• Inherited during a live upgrade of an executable file

• Used by the Perl module

• Available to worker processes

Note that controlling system libraries in this way may not always be effective, as libraries often check
variables only during initialization, which occurs before this directive takes effect. The TZ variable is
always inherited and accessible to the Perl module unless explicitly configured otherwise.

Example:

3.2. References and Indexes 21

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

env MALLOC_OPTIONS;
env PERL5LIB=/data/site/modules;
env OPENSSL_ALLOW_PROXY_CERTS=1;

ò Note

The ANGIE environment variable is used internally by Angie and should not be set directly by the
user.

error_log

Syntax error_log file [level];
Default error_log logs/error.log error; (the path depends on the --error-log-path

build option)
Context main, http, mail, stream, server, location

Configures logging, allowing multiple logs to be specified at the same configuration level. If a log file is
not explicitly defined at the main configuration level, the default file will be used.

The first parameter specifies the file to store the log. The special value stderr selects the standard error
stream. To configure logging to syslog , use the "syslog:" prefix. To log to a cyclic memory buffer , use
the "memory:" prefix followed by the buffer size; this is typically used for debugging.

The second parameter sets the logging level, which can be one of the following: debug, info, notice,
warn, error, crit, alert, or emerg. These levels are listed in order of increasing severity. Setting a log
level will capture messages of equal and higher severity:

Setting Levels Captured

debug debug, info, notice, warn, error, crit, alert, emerg
info info, notice, warn, error, crit, alert, emerg
notice notice, warn, error, crit, alert, emerg
warn warn, error, crit, alert, emerg
error error, crit, alert, emerg
crit crit, alert, emerg
alert alert, emerg
emerg emerg

If this parameter is omitted, error is used as the default logging level.

s Important

For the debug logging level to work, Angie must be built with debugging log enabled.

events

Syntax events { ... };
Default —
Context main

Provides the configuration file context for directives that affect connection processing.

3.2. References and Indexes 22

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

include

Syntax include file | mask ;
Default —
Context any

Includes another file, or files that match the specified mask, into the configuration. The included files
must contain syntactically correct directives and blocks.

Example:

include mime.types;
include vhosts/*.conf;

load_module

Syntax load_module file;
Default —
Context main

Loads a dynamic module from the specified file. If a relative path is provided, it is interpreted based on
the --prefix build option. To verify the path:

$ sudo angie -V

Example:

load_module modules/ngx_mail_module.so;

lock_file

Syntax lock_file file;
Default lock_file logs/angie.lock; (the path depends on the --lock-path build option)
Context main

Angie uses a locking mechanism to implement accept_mutex and serialize access to shared memory. On
most systems, locks are managed using atomic operations, making this directive unnecessary. On certain
systems, however, an alternative lock file mechanism is used. This directive sets a prefix for lock file
names.

master_process

Syntax master_process on | off;
Default master_process on;
Context main

Determines whether worker processes are started. This directive is intended for Angie developers.

3.2. References and Indexes 23

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

multi_accept

Syntax multi_accept on | off;
Default multi_accept off;
Context events

on A worker process will accept all new connections simultaneously.
off A worker process will accept one new connection at a time.

ò Note

This directive is ignored if the kqueue connection processing method is used, as it provides the number
of new connections ready to be accepted.

pcre_jit

Syntax pcre_jit on | off;
Default pcre_jit off;
Context main

Enables or disables "just-in-time compilation" (PCRE JIT) for regular expressions known at the time of
configuration parsing.

PCRE JIT can significantly accelerate regular expression processing.

s Important

JIT is available in PCRE libraries from version 8.20, provided they are built with the --enable-jit
configuration option. When Angie is built with the PCRE library (--with-pcre=), JIT support is
enabled using the --with-pcre-jit option.

pid

Syntax pid file | off;
Default pid logs/angie.pid; (the path depends on the --pid-path build option)
Context main

Specifies the file that will store the ID of the Angie main process. The file is created atomically, which
ensures its contents are always correct. The off setting disables the creation of this file.

ò Note

If the file setting is modified during reconfiguration but points to a symlink of the previous PID file,
the file will not be recreated.

3.2. References and Indexes 24

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssl_engine

Syntax ssl_engine device;
Default —
Context main

Specifies the name of the hardware SSL accelerator.

ssl_object_cache_inheritable

Syntax ssl_object_cache_inheritable on | off;
Default ssl_object_cache_inheritable on;
Context main

If enabled, SSL objects (SSL certificates, secret keys, trusted CA certificates, CRL lists) are inherited
across configuration reloads.

SSL objects loaded from files are inherited if their modification time and file index have not changed
since the previous configuration load. Secret keys specified as engine:name:id are never inherited, while
secret keys specified as data:value are always inherited.

SSL objects loaded from variables cannot be inherited.

Example:

ssl_object_cache_inheritable on;

http {
server {

ssl_certificate example.com.crt;
ssl_certificate_key example.com.key;

}
}

thread_pool

Syntax thread_pool name threads=number [max_queue=number];
Default thread_pool default threads=32 max_queue=65536;
Context main

Defines the name and parameters of a thread pool used for multi-threaded reading and sending of files
without blocking worker processes.

The threads parameter defines the number of threads in the pool.

If all threads in the pool are busy executing tasks, new tasks wait in a queue. The max_queue parameter
limits the number of tasks allowed to be waiting in the queue. By default, up to 65536 tasks can be in
the queue. When the queue overflows, the task is completed with an error.

timer_resolution

Syntax timer_resolution interval ;
Default —
Context main

3.2. References and Indexes 25

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Reduces timer resolution in worker processes, thus reducing the number of gettimeofday() system calls.
By default, gettimeofday() is called each time a kernel event is received. With reduced resolution,
gettimeofday() is only called once per specified interval.

Example:

timer_resolution 100ms;

Internal implementation of the interval depends on the method used:

• the EVFILT_TIMER filter if kqueue is used;

• timer_create() if eventport is used;

• setitimer() otherwise.

use

Syntax use method ;
Default —
Context events

Specifies the method to use for connection processing . There is normally no need to specify it explicitly,
because Angie will by default use the most efficient method.

user

Syntax user user [group];
Default user <build parameter --user> <build parameter --group>;
Context main

Defines user and group credentials used by worker processes (see also build parameters). If group is
omitted, a group whose name equals that of user is used.

worker_aio_requests

Syntax worker_aio_requests number ;
Default worker_aio_requests 32;
Context events

When using aio with the epoll connection processing method, sets the maximum number of outstanding
asynchronous I/O operations for a single worker process.

worker_connections

Syntax worker_connections number ;
Default worker_connections 512;
Context events

Sets the maximum number of simultaneous connections that can be opened by a worker process.

It should be kept in mind that this number includes all connections (e.g. connections with proxied servers,
among others), not only connections with clients. Another consideration is that the actual number of
simultaneous connections cannot exceed the current limit on the maximum number of open files, which
can be changed by worker_rlimit_nofile.

3.2. References and Indexes 26

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

worker_cpu_affinity

Syntax worker_cpu_affinity cpumask ...;
worker_cpu_affinity auto [cpumask];

Default —
Context main

Binds worker processes to the sets of CPUs. Each CPU set is represented by a bitmask of allowed CPUs.
There should be a separate set defined for each of the worker processes. By default, worker processes
are not bound to any specific CPUs.

For example:

worker_processes 4;
worker_cpu_affinity 0001 0010 0100 1000;

This configuration binds each worker process to a separate CPU.

Alternatively:

worker_processes 2;
worker_cpu_affinity 0101 1010;

This binds the first worker process to CPU0 and CPU2, and the second worker process to CPU1 and
CPU3. This setup is suitable for hyper-threading.

The special value auto allows binding worker processes automatically to available CPUs:

worker_processes auto;
worker_cpu_affinity auto;

The optional mask parameter can be used to limit the CPUs available for automatic binding:

worker_cpu_affinity auto 01010101;

s Important

The directive is only available on FreeBSD and Linux.

worker_priority

Syntax worker_priority number ;
Default worker_priority 0;
Context main

Defines the scheduling priority for worker processes like it is done by the nice command: a negative
number means higher priority. Allowed range normally varies from -20 to 20.

Example:

worker_priority -10;

3.2. References and Indexes 27

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

worker_processes

Syntax worker_processes number | auto;
Default worker_processes 1;
Context main

Defines the number of worker processes.

The optimal value depends on many factors including (but not limited to) the number of CPU cores,
the number of hard disk drives that store data, and load pattern. When one is in doubt, setting it to
the number of available CPU cores would be a good start (the value "auto" will try to autodetect it).

worker_rlimit_core

Syntax worker_rlimit_core size;
Default —
Context main

Changes the limit on the largest size of a core file (RLIMIT_CORE) for worker processes. Used to increase
the limit without restarting the main process.

worker_rlimit_nofile

Syntax worker_rlimit_nofile number ;
Default —
Context main

Changes the limit on the maximum number of open files (RLIMIT_NOFILE) for worker processes. Used
to increase the limit without restarting the main process.

worker_shutdown_timeout

Syntax worker_shutdown_timeout time;
Default —
Context main

Configures a timeout for a graceful shutdown of worker processes. When the time expires, Angie will try
to close all the connections currently open to facilitate shutdown.

Graceful shutdown is initiated by sending a QUIT signal to the main process, which instructs worker pro-
cesses to stop accepting new connections and allows existing connections to complete. Worker processes
continue to handle active requests until they finish, then shut down gracefully. If connections remain
open longer than worker_shutdown_timeout, Angie will forcibly close these connections to complete the
shutdown. Also, client keep-alive connections are closed only if they have been idle for at least the time
specified by lingering_timeout .

working_directory

Syntax working_directory directory ;
Default —
Context main

3.2. References and Indexes 28

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Defines the current working directory for a worker process. It is primarily used when writing a core-file,
in which case a worker process should have write permission for the specified directory.

HTTP Module

Access

The module controls access to server resources based on client IP addresses or networks. It allows to
permit or block specific IPs, IP ranges, or UNIX domain sockets to enhance security by restricting access
to sensitive areas of a website or application.

Access can also be restricted by using a password with the Auth Basic module or based on the result
of a subrequest with the Auth Request module. To apply both address and password restrictions at the
same time, use the satisfy directive.

Configuration Example

location / {

deny 192.168.1.1;
allow 192.168.1.0/24;
allow 10.1.1.0/16;
allow 2001:0db8::/32;
deny all;

}

Rules are evaluated sequentially until a match is found. In this example, access is allowed only for the
IPv4 networks 10.1.1.0/16 and 192.168.1.0/24, excluding the specific address 192.168.1.1, and for
the IPv6 network 2001:0db8::/32. When there are many rules, it is preferable to use variables from
the Geo module.

Directives

allow

Syntax allow address | CIDR | unix: | all;
Default —
Context http, server, location, limit_except

Allows access for a specified network or address. The special value all means all client IPs.

Added in version 1.5.1: The special value unix: allows access for any UNIX domain sockets.

deny

Syntax deny address | CIDR | unix: | all;
Default —
Context http, server, location, limit_except

Denies access for a specified network or address. The special value all means all client IPs.

Added in version 1.5.1: The special value unix: denies access for any UNIX domain sockets.

3.2. References and Indexes 29

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ACME

Provides automatic certificate retrieval using the ACME protocol.

When building from the source code, the module isn't built by default; it must be enabled with the
build option --with-http_acme_module. In packages and images from our repositories, the module is
included in the build.

Configuration Example

Examples of configuration and setup instructions can be found in the ACME Configuration section.

Directives

acme

Syntax acme name;
Default —
Context server

For all domains specified in the server_name directives in all server blocks that reference the ACME
client with the given name, a single certificate will be obtained; if the server_name configuration changes,
the certificate will be renewed to reflect the changes.

Each time Angie starts, new certificates are requested for all domains that are missing a valid certificate.
Possible reasons include certificate expiration, missing or unreadable files, and changes in certificate
settings.

ò Note

Currently, domains specified with regular expressions are not supported and will be skipped.

Wildcard domains are supported only with challenge=dns in acme_client.

This directive can be specified multiple times to load certificates of different types, for example RSA and
ECDSA:

server {

listen 443 ssl;
server_name example.com www.example.com;

ssl_certificate $acme_cert_rsa;
ssl_certificate_key $acme_cert_key_rsa;

ssl_certificate $acme_cert_ecdsa;
ssl_certificate_key $acme_cert_key_ecdsa;

acme rsa;
acme ecdsa;

}

3.2. References and Indexes 30

https://datatracker.ietf.org/doc/html/rfc8555

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

acme_client

Syntax acme_client name uri [enabled=on | off] [key_type=type] [key_bits=number]
[email=email] [max_cert_size=number] [renew_before_expiry=time]
[renew_on_load] [retry_after_error=off|time] [challenge=dns | http]
[account_key=file];

Default —
Context http

Defines an ACME client with a globally unique name. It must be valid for a directory, is a string with
variables, and will be used case-insensitively.

� Tip

The client name specified here identifies it in the Angie configuration, allowing you to match
acme_client, acme directives, and module variables that use this name; don't confuse it with your
domain or server name.

The second mandatory parameter is the uri of the ACME directory. For example, the Let's Encrypt
ACME directory URI is specified as https://acme-v02.api.letsencrypt.org/directory.

ò Note

The ACME module adds a named location @acme to the client context, which can be used to
configure requests to the ACME directory; by default, this location contains a proxy_pass directive
with the directory uri, to which other settings from the Proxy module can be added.

For this directive to work, a resolver must be configured in the same context.

ò Note

For testing purposes, certificate authorities usually provide separate staging environments. For exam-
ple, the Let's Encrypt staging environment is https://acme-staging-v02.api.letsencrypt.org/directory.

3.2. References and Indexes 31

https://letsencrypt.org/getting-started/
https://acme-v02.api.letsencrypt.org/directory
https://letsencrypt.org/docs/staging-environment/
https://acme-staging-v02.api.letsencrypt.org/directory

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

enabled Enables or disables certificate renewal for the client; this is useful, for example,
for temporarily suspending without removing the client from the configuration.
Default: on.

key_type The type of private key algorithm for the certificate. Valid values: rsa, ecdsa.
Default: ecdsa.

key_bits Number of bits in the certificate key. Default: 256 for ecdsa, 2048 for rsa.
email Optional email address for feedback; used when creating an account on the CA

server.
max_cert_size Specifies the maximum allowed size of a new certificate file in bytes to reserve

space for the new certificate in shared memory; the more domains the certificate
is requested for, the more space is required.
If a certificate already exists at startup but its size exceeds the max_cert_size
value, the max_cert_size value is dynamically increased to match the size of the
existing certificate file.
If the size of a certificate obtained during renewal exceeds max_cert_size, the
renewal process will fail with an error.
Default: 8192.

renew_before_expiryTime before certificate expiration when renewal should begin.
Default: 30d.

renew_on_load Specifies that the certificate should be forcibly renewed each time the configura-
tion is loaded.

retry_after_errorTime to wait before retrying if certificate retrieval failed. If set to off, the client
will not retry to obtain the certificate after an error.
Default: 2h.

challenge Specifies the verification type for the ACME client. Valid values: dns, http.
Default: http.

account_key Specifies the full path to a file containing a key in PEM format. This is useful
if you want to use an existing account key instead of automatic generation, or if
you need to use one key for multiple ACME clients.
Supported key types:

• RSA keys with lengths that are multiples of 8, ranging from 2048 to 8192
bits.

• ECDSA keys with lengths of 256, 384, or 521 bits.
When specifying the account_key parameter, ensure that the key file actually
exists. If the file is missing, Angie will attempt to create it at the specified path.
Note that keys for ACME clients are created in the order the corresponding
clients are mentioned in the configuration in acme_client , acme, or acme_hook
directives. Therefore, if one client should use a key created for another, that
other client must appear earlier in the configuration.
Additionally, keys are only created for clients that have the enabled=on param-
eter set.

acme_client_path

Syntax acme_client_path path;
Default —
Context http

Overrides the path to the directory for storing certificates and keys, specified at build time with the build
option --http-acme-client-path.

3.2. References and Indexes 32

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

acme_dns_port

Syntax acme_dns_port port | ip[:port] | [ip6] [:port];
Default acme_dns_port 53;
Context http

Specifies the port that the module uses to handle DNS queries from the ACME server over UDP. The
port number must be in the range from 1 to 65535.

Specifying an IP address along with an optional port is also supported. Both IPv4 addresses in the form
ip:port and IPv6 addresses in the form [ip6]:port can be used:

acme_dns_port 8053;
acme_dns_port 127.0.0.1;
acme_dns_port [::1];

To use port number 1024 or lower, Angie must run with superuser privileges.

acme_hook

Syntax acme_hook name [uri];
Default —
Context location

The directive links the server to the specified ACME client. Handler (hook) calls implemented by an
external service are made through the location context where it is located.

name Specifies the corresponding ACME client.
uri A string with variables; specifies the request string for handler calls.

Default: /.

For example, the following configuration passes the values of hook variables to a FastCGI application
through the request string:

acme_hook example uri=/acme_hook/$acme_hook_name?domain=$acme_hook_domain&key=$acme_
→˓hook_keyauth;
fastcgi_param REQUEST_URI $request_uri;
fastcgi_pass ...;

Built-in Variables

$acme_cert_<name>

Contents of the last certificate file (if any) obtained by the client with this name.

$acme_cert_key_<name>

Contents of the certificate key file used by the client with this name.

s Important

The certificate file is available only if the ACME client has obtained at least one certificate, but the
key file is available immediately after startup.

3.2. References and Indexes 33

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$acme_hook_challenge

The verification type. Possible values: dns, http.

$acme_hook_client

The name of the ACME client initiating the request.

$acme_hook_domain

The domain being verified. If it is a wildcard domain, it will be passed without the *. prefix.

$acme_hook_keyauth

The authorization string:

• For DNS verification, it is used as the value of the TXT record, whose name is formed as
_acme-challenge. + $acme_hook_domain + ..

• For HTTP verification, this string must be used as the content of the response requested by the
ACME server.

$acme_hook_name

The hook name. For different verification types, it may have different values and meanings:

Value Meaning for DNS verification Meaning for HTTP verification
add (adding hook) The corresponding TXT record

must be added to the DNS con-
figuration.

A response to the correspond-
ing HTTP request must be pre-
pared.

remove (removing hook) The TXT record can be re-
moved from the DNS configura-
tion.

This HTTP request is no longer
relevant; the previously created
file with the authorization string
can be removed.

$acme_hook_token

The verification token. For HTTP verification, it is used as the name of the requested file: /.well-known/
acme-challenge/ + $acme_hook_token.

Addition

The module is a filter that adds text before and after a response.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_addition_module build option.

In packages and images from our repos, the module is included in the build.

Configuration Example

location / {
add_before_body /before_action;
add_after_body /after_action;

}

3.2. References and Indexes 34

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Directives

add_before_body

Syntax add_before_body uri ;
Default —
Context http, server, location

Adds the text returned as a result of processing a given subrequest before the response body. An empty
string ("") as a parameter cancels addition inherited from the previous configuration level.

add_after_body

Syntax add_after_body uri ;
Default —
Context http, server, location

Adds the text returned as a result of processing a given subrequest after the response body. An empty
string ("") as a parameter cancels addition inherited from the previous configuration level.

addition_types

Syntax addition_types mime-type ...;
Default addition_types text/html;
Context http, server, location

Allows adding text in responses with the specified MIME types, in addition to "text/html". The special
value "*" matches any MIME type.

API

The API module implements an HTTP RESTful interface for obtaining basic information about the
web server in JSON format, as well as statistics on client connections, shared memory zones, DNS
queries, HTTP requests, HTTP response cache, stream module sessions, and zones of the limit_conn
http, limit_conn stream, limit_req , and http upstream modules.

The interface accepts GET and HEAD HTTP methods; a request with another method will cause an error:

{
"error": "MethodNotAllowed",
"description": "The POST method is not allowed for the requested API element \"/\

→˓"."
}

In Angie PRO, this interface includes a dynamic configuration section that allows changing settings
without reloading the configuration or restarting; currently, configuration of individual servers within
upstream is available.

Directives

3.2. References and Indexes 35

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

api

Syntax api path;
Default —
Context location

Enables HTTP RESTful interface in location.

The path parameter is mandatory. Similar to the alias directive, it sets the path for replacing the one
specified in location, but over the API tree rather than the filesystem.

If specified in a prefix location:

location /stats/ {
api /status/http/server_zones/;

}

the part of the request URI matching the prefix /stats/ will be replaced with the path specified in the
path parameter: /status/http/server_zones/. For example, a request to /stats/foo/ will access the API
element /status/http/server_zones/foo/.

Variables are allowed: api /status/$module/server_zones/$name/ and usage inside regex location:

location ~^/api/([^/]+)/(.*)$ {
api /status/http/$1_zones/$2;

}

Here the path parameter defines the full path to the API element; thus, from a request to /api/location/
data/ the following variables will be extracted:

$1 = "location"
$2 = "data/"

And the final request will be /status/http/location_zones/data/.

ò Note

In Angie PRO, you can separate the dynamic configuration API and the immutable status API that
reflects the current state:

location /config/ {
api /config/;

}

location /status/ {
api /status/;

}

The path parameter also allows controlling API access:

location /status/ {
api /status/;

allow 127.0.0.1;
deny all;

}

Or:

3.2. References and Indexes 36

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

location /blog/requests/ {
api /status/http/server_zones/blog/requests/;

auth_basic "blog";
auth_basic_user_file conf/htpasswd;

}

api_config_files

Syntax api_config_files on | off;
Default off
Context location

Enables or disables adding the config_files object, which lists the contents of all Angie configuration
files currently loaded by the server instance, to the /status/angie/ API section. For example, with this
configuration:

location /status/ {
api /status/;
api_config_files on;

}

A request to /status/angie/ returns approximately the following:

{
"version":"1.10.0",
"address":"192.168.16.5",
"generation":1,
"load_time":"2025-07-03T12:58:39.789Z",
"config_files": {

"/etc/angie/angie.conf": "...",
"/etc/angie/mime.types": "..."

}
}

By default, output is disabled because configuration files may contain particularly sensitive, confidential
information.

Metrics

Angie publishes usage statistics in the /status/ API section; you can open access to it by setting the
appropriate location. Full access:

location /status/ {
api /status/;

}

Example of partial access, already shown above:

location /stats/ {
api /status/http/server_zones/;

}

3.2. References and Indexes 37

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Example configuration

With configuration including location /status/, resolver, http in upstream, http server,
location, cache, limit_conn in http and limit_req zones:

http {

resolver 127.0.0.53 status_zone=resolver_zone;
proxy_cache_path /var/cache/angie/cache keys_zone=cache_zone:2m;
limit_conn_zone $binary_remote_addr zone=limit_conn_zone:10m;
limit_req_zone $binary_remote_addr zone=limit_req_zone:10m rate=1r/s;

upstream upstream {
zone upstream 256k;
server backend.example.com service=_example._tcp resolve max_conns=5;

keepalive 4;
}

server {
server_name www.example.com;
listen 443 ssl;

status_zone http_server_zone;
proxy_cache cache_zone;

access_log /var/log/access.log main;

location / {
root /usr/share/angie/html;
status_zone location_zone;
limit_conn limit_conn_zone 1;
limit_req zone=limit_req_zone burst=5;

}
location /status/ {

api /status/;

allow 127.0.0.1;
deny all;

}

}
}

In response to the request curl https://www.example.com/status/ Angie returns:

JSON tree

{
"angie": {

"version":"1.10.0",
"address":"192.168.16.5",
"generation":1,
"load_time":"2025-07-03T12:58:39.789Z"

},

"connections": {
"accepted":2257,
"dropped":0,

3.2. References and Indexes 38

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

"active":3,
"idle":1

},

"slabs": {
"cache_zone": {

"pages": {
"used":2,
"free":506

},

"slots": {
"64": {

"used":1,
"free":63,
"reqs":1,
"fails":0

},

"512": {
"used":1,
"free":7,
"reqs":1,
"fails":0

}
}

},

"limit_conn_zone": {
"pages": {

"used":2,
"free":2542

},

"slots": {
"64": {

"used":1,
"free":63,
"reqs":74,
"fails":0

},

"128": {
"used":1,
"free":31,
"reqs":1,
"fails":0

}
}

},

"limit_req_zone": {
"pages": {

"used":2,
"free":2542

},

3.2. References and Indexes 39

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

"slots": {
"64": {

"used":1,
"free":63,
"reqs":1,
"fails":0

},

"128": {
"used":2,
"free":30,
"reqs":3,
"fails":0

}
}

}
},

"http": {
"server_zones": {

"http_server_zone": {
"ssl": {

"handshaked":4174,
"reuses":0,
"timedout":0,
"failed":0

},

"requests": {
"total":4327,
"processing":0,
"discarded":8

},

"responses": {
"200":4305,
"302":12,
"404":4

},

"data": {
"received":733955,
"sent":59207757

}
}

},

"location_zones": {
"location_zone": {

"requests": {
"total":4158,
"discarded":0

},

"responses": {
"200":4157,
"304":1

3.2. References and Indexes 40

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

},

"data": {
"received":538200,
"sent":177606236

}
}

},
"caches": {

"cache_zone": {
"size":0,
"cold":false,
"hit": {

"responses":0,
"bytes":0

},

"stale": {
"responses":0,
"bytes":0

},

"updating": {
"responses":0,
"bytes":0

},

"revalidated": {
"responses":0,
"bytes":0

},

"miss": {
"responses":0,
"bytes":0,
"responses_written":0,
"bytes_written":0

},

"expired": {
"responses":0,
"bytes":0,
"responses_written":0,
"bytes_written":0

},

"bypass": {
"responses":0,
"bytes":0,
"responses_written":0,
"bytes_written":0

}
}

},

"limit_conns": {
"limit_conn_zone": {

3.2. References and Indexes 41

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

"passed":73,
"skipped":0,
"rejected":0,
"exhausted":0

}
},

"limit_reqs": {
"limit_req_zone": {

"passed":54816,
"skipped":0,
"delayed":65,
"rejected":26,
"exhausted":0

}
},

"upstreams": {
"upstream": {

"peers": {
"192.168.16.4:80": {

"server":"backend.example.com",
"service":"_example._tcp",
"backup":false,
"weight":5,
"state":"up",
"selected": {

"current":2,
"total":232

},

"max_conns":5,
"responses": {

"200":222,
"302":12

},

"data": {
"sent":543866,
"received":27349934

},

"health": {
"fails":0,
"unavailable":0,
"downtime":0

},

"sid":"<server_id>"
}

},

"keepalive":2
}

}
},

3.2. References and Indexes 42

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

"resolvers": {
"resolver_zone": {

"queries": {
"name":442,
"srv":2,
"addr":0

},

"responses": {
"success":440,
"timedout":1,
"format_error":0,
"server_failure":1,
"not_found":1,
"unimplemented":0,
"refused":1,
"other":0

}
}

}
}

A set of metrics can be requested by individual JSON branch by constructing the appropriate request.
For example:

$ curl https://www.example.com/status/angie
$ curl https://www.example.com/status/connections
$ curl https://www.example.com/status/slabs
$ curl https://www.example.com/status/slabs/<zone>/slots
$ curl https://www.example.com/status/slabs/<zone>/slots/64
$ curl https://www.example.com/status/http/
$ curl https://www.example.com/status/http/server_zones
$ curl https://www.example.com/status/http/server_zones/<http_server_zone>
$ curl https://www.example.com/status/http/server_zones/<http_server_zone>/ssl

ò Note

By default, the module uses ISO 8601 format strings for dates; to use the integer UNIX epoch format
instead, add the date=epoch parameter to the query string:

$ curl https://www.example.com/status/angie/load_time

"2024-04-01T00:59:59+01:00"

$ curl https://www.example.com/status/angie/load_time?date=epoch

1711929599

Server status

/status/angie

{
"version": "1.10.0",
"build_time": "2025-07-03T16:05:43.805Z",
"address": "192.168.16.5",

3.2. References and Indexes 43

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

"generation": 1,
"load_time": "2025-07-03T16:15:43.805Z"
"config_files": {

"/etc/angie/angie.conf": "...",
"/etc/angie/mime.types": "..."

}
}

version String; version of the running Angie web server
build String; particular build name when it specified during compilation
build_time String; the build time of the Angie executable in the date format
address String; the address of the server that accepted API request
generation Number; total number of configuration reloads since last start
load_time String; time of the last configuration reload in the date format; string values

have millisecond resolution
config_files Object; its members are absolute pathnames of all Angie configuration files

that are currently loaded by the server instance, and their values are string
representations of the files' contents, for example:

{
"/etc/angie/angie.conf": "server {\n listen 80;\n # ...\

→˓n\n}\n"
}

³ Caution

The config_files object is available in /status/angie/ only if the
api_config_files directive is enabled.

Connections

/status/connections

{
"accepted": 2257,
"dropped": 0,
"active": 3,
"idle": 1

}

accepted Number; the total number of accepted client connections
dropped Number; the total number of dropped client connections
active Number; the current number of active client connections
idle Number; the current number of idle client connections

Shared memory zones with slab allocation

/status/slabs/<zone>

Usage statistics of shared memory zones that utilize slab allocation, such as limit_conn, limit_req , and
HTTP cache:

limit_conn_zone $binary_remote_addr zone=limit_conn_zone:10m;
limit_req_zone $binary_remote_addr zone=limit_req_zone:10m rate=1r/s;

3.2. References and Indexes 44

https://en.wikipedia.org/wiki/Slab_allocation

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxy_cache cache_zone;

The specified shared memory zone will collect the following statistics:

pages Object; memory pages statistics
used Number; the number of currently used memory pages
free Number; the number of currently free memory pages

slots Object; memory slots statistics for each slot size. The slots object contains
data for memory slot sizes (8, 16, 32, etc., up to half of the page size in
bytes)

used Number; the number of currently used memory slots of specified size
free Number; the number of currently free memory slots of specified size
reqs Number; the total number of attempts to allocate memory of specified size
fails Number; the number of unsuccessful attempts to allocate memory of speci-

fied size

Example:

{
"pages": {

"used": 2,
"free": 506

},

"slots": {
"64": {

"used": 1,
"free": 63,
"reqs": 1,
"fails": 0

}
}

DNS queries to resolver

/status/resolvers/<zone>

To collect resolver statistics, the resolver directive must set the status_zone parameter (HTTP or
Stream):

resolver 127.0.0.53 status_zone=resolver_zone;

The specified shared memory zone will collect the following statistics:

3.2. References and Indexes 45

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

queries Object; queries statistics
name Number; the number of queries to resolve names to addresses (A and AAAA

queries)
srv Number; the number of queries to resolve services to addresses (SRV queries)
addr Number; the number of queries to resolve addresses to names (PTR queries)

responses Object; responses statistics
success Number; the number of successful responses
timedout Number; the number of timed out queries
format_error Number; the number of responses with code 1 (Format Error)
server_failure Number; the number of responses with code 2 (Server Failure)
not_found Number; the number of responses with code 3 (Name Error)
unimplemented Number; the number of responses with code 4 (Not Implemented)
refused Number; the number of responses with code 5 (Refused)
other Number; the number of queries completed with other non-zero code

sent Object; sent DNS queries statistics
a Number; the number of A type queries
aaaa Number; the number of AAAA type queries
ptr Number; the number of PTR type queries
srv Number; the number of SRV type queries

The response codes are described in RFC 1035, section 4.1.1.

Various DNS record types are detailed in RFC 1035, RFC 2782, and RFC 3596.

Example:

{
"queries": {

"name": 442,
"srv": 2,
"addr": 0

},

"responses": {
"success": 440,
"timedout": 1,
"format_error": 0,
"server_failure": 1,
"not_found": 1,
"unimplemented": 0,
"refused": 1,
"other": 0

},

"sent": {
"a": 185,
"aaaa": 245,
"srv": 2,
"ptr": 12

}
}

HTTP server and location

/status/http/server_zones/<zone>

To collect the server metrics, set the status_zone directive in the server context:

3.2. References and Indexes 46

https://datatracker.ietf.org/doc/html/rfc1035.html
https://datatracker.ietf.org/doc/html/rfc1035.html#section-4.1.1
https://datatracker.ietf.org/doc/html/rfc1035.html
https://datatracker.ietf.org/doc/html/rfc2782.html
https://datatracker.ietf.org/doc/html/rfc3596.html

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

server {
...
status_zone server_zone;

}

To group the metrics by a custom value, use the alternative syntax. Here, the metrics are aggregated by
$host , with each group reported as a standalone zone:

status_zone $host zone=server_zone:5;

The specified shared memory zone will collect the following statistics:

ssl Object; SSL statistics. Present if server sets listen ssl;
handshaked Number; the total number of successful SSL handshakes
reuses Number; the total number of session reuses during SSL handshake
timedout Number; the total number of timed out SSL handshakes
failed Number; the total number of failed SSL handshakes

requests Object; requests statistics
total Number; the total number of client requests
processing Number; the number of currently being processed client requests
discarded Number; the total number of client requests completed without sending a

response
responses Object; responses statistics

<code> Number; a non-zero number of responses with status <code> (100-599)
xxx Number; a non-zero number of responses with other status codes

data Object; data statistics
received Number; the total number of bytes received from clients
sent Number; the total number of bytes sent to clients

Example:

{
"ssl":{

"handshaked":4174,
"reuses":0,
"timedout":0,
"failed":0

},

"requests":{
"total":4327,
"processing":0,
"discarded":0

},

"responses":{
"200":4305,
"302":6,
"304":12,
"404":4

},

"data":{
"received":733955,
"sent":59207757

}
}

3.2. References and Indexes 47

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

/status/http/location_zones/<zone>

To collect the location metrics, set the status_zone directive in the context of location or if in location:

location / {
root /usr/share/angie/html;
status_zone location_zone;

if ($request_uri ~* "^/condition") {
...
status_zone if_location_zone;

}
}

To group the metrics by a custom value, use the alternative syntax. Here, the metrics are aggregated by
$host , with each group reported as a standalone zone:

status_zone $host zone=server_zone:5;

The specified shared memory zone will collect the following statistics:

requests Object; requests statistics
total Number; the total number of client requests
discarded Number; the total number of client requests completed without sending a

response
responses Object; responses statistics

<code> Number; a non-zero number of responses with status <code> (100-599)
xxx Number; a non-zero number of responses with other status codes

data Object; data statistics
received Number; the total number of bytes received from clients
sent Number; the total number of bytes sent to clients

Example:

{
"requests": {

"total": 4158,
"discarded": 0

},

"responses": {
"200": 4157,
"304": 1

},

"data": {
"received": 538200,
"sent": 177606236

}
}

Stream server

/status/stream/server_zones/<zone>

To collect the server metrics, set the status_zone directive in the server context:

3.2. References and Indexes 48

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

server {
...
status_zone server_zone;

}

To group the metrics by a custom value, use the alternative syntax. Here, the metrics are aggregated by
$host , with each group reported as a standalone zone:

status_zone $host zone=server_zone:5;

The specified shared memory zone will collect the following statistics:

ssl Object; SSL statistics. Present if server sets listen ssl;
handshaked Number; the total number of successful SSL handshakes
reuses Number; the total number of session reuses during SSL handshake
timedout Number; the total number of timed out SSL handshakes
failed Number; the total number of failed SSL handshakes

connections Object; connections statistics
total Number; the total number of client connections
processing Number; the number of currently being processed client connections
discarded Number; the total number of client connections completed without creating

a session
passed Number; the total number of client connections relayed to another listening

port with pass directives
sessions Object; sessions statistics

success Number; the number of sessions completed with code 200, which means
successful completion

invalid Number; the number of sessions completed with code 400, which happens
when client data could not be parsed, e.g. the PROXY protocol header

forbidden Number; the number of sessions completed with code 403, when access was
forbidden, for example, when access is limited for certain client addresses

internal_error Number; the number of sessions completed with code 500, the internal server
error

bad_gateway Number; the number of sessions completed with code 502, bad gateway, for
example, if an upstream server could not be selected or reached

service_unavailable Number; the number of sessions completed with code 503, service unavail-
able, for example, when access is limited by the number of connections

data Object; data statistics
received Number; the total number of bytes received from clients
sent Number; the total number of bytes sent to clients

Example:

{
"ssl": {

"handshaked": 24,
"reuses": 0,
"timedout": 0,
"failed": 0

},

"connections": {
"total": 24,
"processing": 1,
"discarded": 0,
"passed": 2

},

3.2. References and Indexes 49

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

"sessions": {
"success": 24,
"invalid": 0,
"forbidden": 0,
"internal_error": 0,
"bad_gateway": 0,
"service_unavailable": 0

},

"data": {
"received": 2762947,
"sent": 53495723

}
}

HTTP caches

proxy_cache cache_zone;

/status/http/caches/<cache>

For each zone configured with proxy_cache, the following data is stored:

{
"name_zone": {

"size": 0,
"cold": false,
"hit": {

"responses": 0,
"bytes": 0

},

"stale": {
"responses": 0,
"bytes": 0

},

"updating": {
"responses": 0,
"bytes": 0

},

"revalidated": {
"responses": 0,
"bytes": 0

},

"miss": {
"responses": 0,
"bytes": 0,
"responses_written": 0,
"bytes_written": 0

},

"expired": {

3.2. References and Indexes 50

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

"responses": 0,
"bytes": 0,
"responses_written": 0,
"bytes_written": 0

},

"bypass": {
"responses": 0,
"bytes": 0,
"responses_written": 0,
"bytes_written": 0

}
}

}

size Number; the current size of the cache
max_size Number; configured limit on the maximum size of the cache
cold Boolean; true while the cache loader loads data from disk
hit Object; statistics of valid cached responses (proxy_cache_valid)

responses Number; the total number of responses read from the cache
bytes Number; the total number of bytes read from the cache

stale Object; statistics of expired responses taken from the cache
(proxy_cache_use_stale)

responses Number; the total number of responses read from the cache
bytes Number; the total number of bytes read from the cache

updating Object; statistics of expired responses taken from the cache while responses
were being updated (proxy_cache_use_stale updating)

responses Number; the total number of responses read from the cache
bytes Number; the total number of bytes read from the cache

revalidated Object; statistics of expired and revalidated responses taken from the cache
(proxy_cache_revalidate)

responses Number; the total number of responses read from the cache
bytes Number; the total number of bytes read from the cache

miss Object; statistics of responses not found in the cache
responses Number; the total number of corresponding responses
bytes Number; the total number of bytes read from the proxied server
responses_written Number; the total number of responses written to the cache
bytes_written Number; the total number of bytes written to the cache

expired Object; statistics of expired responses not taken from the cache
responses Number; the total number of corresponding responses
bytes Number; the total number of bytes read from the proxied server
responses_written Number; the total number of responses written to the cache
bytes_written Number; the total number of bytes written to the cache

bypass Object; statistics of responses not looked up in the cache
(proxy_cache_bypass)

responses Number; the total number of corresponding responses
bytes Number; the total number of bytes read from the proxied server
responses_written Number; the total number of responses written to the cache
bytes_written Number; the total number of bytes written to the cache

Added in version 1.2.0: PRO

In Angie PRO, if cache sharding is enabled with proxy_cache_path directives, individual shards are
exposed as object members of a shards object:

3.2. References and Indexes 51

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

shards Object; lists individual shards as members
<shard> Object; represents an individual shard with its cache path for name

size Number; the shard's current size
max_size Number; maximum shard size, if configured
cold Boolean; true while the cache loader loads data from disk

{
"name_zone": {

"shards": {
"/path/to/shard1": {

"size": 0,
"cold": false

},

"/path/to/shard2": {
"size": 0,
"cold": false

}
}

}

limit_conn

limit_conn_zone $binary_remote_addr zone=limit_conn_zone:10m;

/status/http/limit_conns/<zone>, /status/stream/limit_conns/<zone>

Objects for each configured limit_conn in http or limit_conn in stream contexts with the following fields:

{
"passed": 73,
"skipped": 0,
"rejected": 0,
"exhausted": 0

}

passed Number; the total number of passed connections
skipped Number; the total number of connections passed with zero-length key, or

key exceeding 255 bytes
rejected Number; the total number of connections exceeding the configured limit
exhausted Number; the total number of connections rejected due to exhaustion of zone

storage

limit_req

limit_req_zone $binary_remote_addr zone=limit_req_zone:10m rate=1r/s;

/status/http/limit_reqs/<zone>

Objects for each configured limit_req with the following fields:

{
"passed": 54816,

3.2. References and Indexes 52

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

"skipped": 0,
"delayed": 65,
"rejected": 26,
"exhausted": 0

}

passed Number; the total number of passed requests
skipped Number; the total number of requests passed with zero-length key, or key

exceeding 255 bytes
delayed Number; the total number of delayed requests
rejected Number; the total number of rejected requests
exhausted Number; the total number of requests rejected due to exhaustion of zone

storage

HTTP upstream

Added in version 1.1.0.

To enable collection of the following metrics, set the zone directive in the upstream context, for instance:

upstream upstream {
zone upstream 256k;
server backend.example.com service=_example._tcp resolve max_conns=5;
keepalive 4;

}

/status/http/upstreams/<upstream>

where <upstream> is the name of any upstream specified with the zone directive

{
"peers": {

"192.168.16.4:80": {
"server": "backend.example.com",
"service": "_example._tcp",
"backup": false,
"weight": 5,
"state": "up",
"selected": {

"current": 2,
"total": 232

},

"max_conns": 5,
"responses": {

"200": 222,
"302": 12

},

"data": {
"sent": 543866,
"received": 27349934

},

"health": {
"fails": 0,

3.2. References and Indexes 53

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

"unavailable": 0,
"downtime": 0

},

"sid": "<server_id>"
}

},

"keepalive": 2
}

3.2. References and Indexes 54

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

peers Object; contains the metrics of the upstream's peers as subobjects whose
names are canonical representations of the peers' addresses. Members of
each subobject:

server String; the parameter of the server directive
service String; name of service as it's specified in server directive, if configured
slow_start (PRO

1.4.0+)
Number; the specified slow_start value for the server, expressed in seconds.
When setting the value via the respective subsection of the dynamic configu-
ration API, you can specify either a number or a time value with millisecond
precision.

backup Boolean; true for backup servers
weight Number; configured weight
state String; the current state of the peer and what requests are sent to it:

• busy: indicates that the number of requests to the server has reached
the limit set by max_conns, and no new requests are sent

• down: manually disabled, no requests are sent
• recovering: recovering after a failure according to slow_start , more

and more requests are sent over time
• unavailable: reached the max_fails limit, only trial client requests

are sent at intervals defined by fail_timeout ;
• up: operational, requests are sent as usual

Additional states in Angie PRO:
• checking: configured as essential and being checked, only probe

requests are sent
• draining: similar to down, but requests from previously bound ses-

sions (via sticky) are still sent
• unhealthy: non-operational, only probe requests are sent

selected Object; peer selection statistics
current Number; the current number of connections to peer
total Number; total number of requests forwarded to peer
last String or number; time when peer was last selected, formatted as a date

max_conns Number; the configured maximum number of simultaneous connections, if
specified

responses Object; responses statistics
<code> Number; a non-zero number of responses with status <code> (100-599)
xxx Number; a non-zero number of responses with other status codes

data Object; data statistics
received Number; the total number of bytes received from peer
sent Number; the total number of bytes sent to peer

health Object; health statistics
fails Number; the total number of unsuccessful attempts to communicate with

the peer
unavailable Number; how many times peer became unavailable due to reaching the

max_fails limit
downtime Number; the total time (in milliseconds) when peer was unavailable for

selection
downstart String or number; time when peer became unavailable, formatted as a

date
header_time

(PRO 1.3.0+)
Number; average time (in milliseconds) to receive the response headers from
the peer; see response_time_factor (PRO)

response_time
(PRO 1.3.0+)

Number; average time (in milliseconds) to receive the entire peer response;
see response_time_factor (PRO)

sid String; configured id of the server in upstream group
keepalive Number; the number of currently cached connections
backup_switch Object; contains the current state of the active backup logic, present if

backup_switch (PRO) is configured for the upstream
active Number; active group identifier, if any
timeout Number; time to expire in milliseconds, after which the balancer will re-

check the groups for healthy peers; does not appear for the primary group
3.2. References and Indexes 55

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

health/probes (PRO)

Changed in version 1.2.0: PRO

If the upstream has upstream_probe (PRO) probes configured, the health object also has a probes
subobject that stores the peer's health probe counters, while the peer's state can also be checking and
unhealthy, apart from the values listed in the table above:

{
"192.168.16.4:80": {

"state": "unhealthy",
"...": "...",
"health": {

"...": "...",
"probes": {

"count": 10,
"fails": 10,
"last": "2025-07-03T09:56:07Z"

}
}

}
}

The checking value of state isn't counted as downtime and means that the peer, which has a probe
configured as essential, hasn't been checked yet; the unhealthy value means that the peer is mal-
functioning. Both states also imply that the peer isn't included in load balancing. For details of health
probes, see upstream_probe.

Counters in probes:

count Number; total probes for this peer
fails Number; total failed probes
last String or number; last probe time, formatted as a date

queue (PRO)

Changed in version 1.4.0: PRO

If a request queue is configured for the upstream, the upstream object also contains a nested queue object
with request queue counters:

{
"queue": {

"queued": 20112,
"waiting": 1011,
"dropped": 6031,
"timedout": 560,
"overflows": 13

}
}

Counter values are summed across all worker processes:

queued Number; total number of requests that entered the queue
waiting Number; current number of requests in the queue
dropped Number; total number of requests removed from the queue because the

client prematurely closed the connection
timedout Number; total number of requests removed from the queue due to timeout
overflows Number; total number of queue overflow occurrences

3.2. References and Indexes 56

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Stream upstream

To enable collection of the following metrics, set the zone directive in the upstream context, for instance:

upstream upstream {
zone upstream 256k;
server backend.example.com service=_example._tcp resolve max_conns=5;
keepalive 4;

}

/status/stream/upstreams/<upstream>

Here, <upstream> is the name of an upstream that is configured with a zone directive.

{
"peers": {

"192.168.16.4:1935": {
"server": "backend.example.com",
"service": "_example._tcp",
"backup": false,
"weight": 5,
"state": "up",
"selected": {

"current": 2,
"total": 232

},

"max_conns": 5,
"data": {

"sent": 543866,
"received": 27349934

},

"health": {
"fails": 0,
"unavailable": 0,
"downtime": 0

}
}

}
}

3.2. References and Indexes 57

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

peers Object; contains the metrics of the upstream's peers as subobjects whose
names are canonical representations of the peers' addresses. Members of
each subobject:

server String; address set by the server directive
service String; service name, if set by server directive

slow_start
(PRO 1.4.0+)

Number; the specified slow_start value for the server, expressed in seconds.
When setting the value via the respective subsection of the dynamic configu-
ration API, you can specify either a number or a time value with millisecond
precision.

backup Boolean; true for backup server
weight Number; the weight of the peer
state String; the current state of the peer and what requests are sent to it:

• busy: indicates that the number of requests to the server has reached
the limit set by max_conns, and no new requests are sent

• down: manually disabled, no requests are sent
• recovering: recovering after a failure according to slow_start , more

and more requests are sent over time
• unavailable: reached the max_fails limit, only trial client requests

are sent at intervals defined by fail_timeout ;
• up: operational, requests are sent as usual

Additional states in Angie PRO:
• checking: configured as essential and being checked, only probe

requests are sent
• draining: similar to down, but requests from previously bound ses-

sions (via sticky) are still sent
• unhealthy: non-operational, only probe requests are sent

selected Object; the peer's selection metrics
current Number; current connections to the peer
total Number; total connections forwarded to the peer
last String or number; time when the peer was last selected, formatted as a date

max_conns Number; maximum number of simultaneous active connections to the peer,
if set

data Object; data transfer metrics
received Number; total bytes received from the peer
sent Number; total bytes sent to the peer

health Object; peer health metrics
fails Number; total failed attempts to reach the peer
unavailable Number; times the peer became unavailable due to reaching the max_fails
downtime Number; total time (in milliseconds) that the peer was unavailable for

selection
downstart String or number; time when the peer last became unavailable, formatted

as a date
connect_time

(PRO 1.4.0+)
Number; average time (in milliseconds) taken to establish a connection with
the peer; see the response_time_factor (PRO) directive.

first_byte_time
(PRO 1.4.0+)

Number; average time (in milliseconds) to receive the first byte of the re-
sponse from the peer; see the response_time_factor (PRO) directive.

last_byte_time
(PRO 1.4.0+)

Number; average time (in milliseconds) to receive the complete response
from the peer; see the response_time_factor (PRO) directive.

backup_switch (PRO
1.10.0+)

Object; contains the current state of active backup logic, present if
backup_switch (PRO) is configured for the upstream

active Number; level of the active group currently used for request balancing. If
the active group is the primary group, the value is 0

timeout Number; remaining wait time in milliseconds after which the load balancer
will recheck for healthy nodes in groups with lower levels, starting from
the primary group, while groups with higher levels are not checked; not
displayed for the primary group (level 0)

3.2. References and Indexes 58

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Changed in version 1.4.0: PRO

In Angie PRO, if the upstream has upstream_probe (PRO) probes configured, the health object also
has a probes subobject that stores the peer's health probe counters, while the peer's state can also be
checking and unhealthy, apart from the values listed in the table above:

{
"192.168.16.4:80": {

"state": "unhealthy",
"...": "...",
"health": {

"...": "...",
"probes": {

"count": 2,
"fails": 2,
"last": "2025-07-03T11:03:54Z"

}
}

}
}

The checking value of state means that the peer, which has a probe configured as essential, hasn't
been checked yet; the unhealthy value means that the peer is malfunctioning. Both states also imply
that the peer isn't included in load balancing. For details of health probes, see upstream_probe.

Counters in probes:

count Number; total probes for this peer
fails Number; total failed probes
last String or number; last probe time, formatted as a date

Dynamic Configuration API (PRO only)

Added in version 1.2.0: PRO

The API includes a /config section that enables dynamic updates to Angie's configuration in JSON
with PUT, PATCH, and DELETE HTTP requests. All updates are atomic; new settings are applied as a
whole, or none are applied at all. On error, Angie reports the reason.

Subsections of /config

Currently, configuration of individual servers within upstreams is available in the /config section for
the HTTP and stream modules; the number of settings eligible for dynamic configuration is steadily
increasing.

/config/http/upstreams/<upstream>/servers/<name>

Enables configuring individual upstream peers, including deleting existing peers or adding new ones.

URI path parameters:

<upstream> Name of the upstream; to be configurable via /config, it must have a zone
directive configured, defining a shared memory zone.

<name> The peer's name within the upstream, defined as <service>@<host>, where:
• <service>@ is an optional service name, used for SRV record resolu-

tion.
• <host> is the domain name of the service (if resolve is present) or

its IP; an optional port can be defined here.

3.2. References and Indexes 59

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

For example, the following configuration:

upstream backend {
server backend.example.com service=_http._tcp resolve;
server 127.0.0.1;
zone backend 1m;

}

Allows the following peer names:

$ curl http://127.0.0.1/config/http/upstreams/backend/servers/_http._tcp@backend.
→˓example.com/
$ curl http://127.0.0.1/config/http/upstreams/backend/servers/127.0.0.1:80/

This API subsection enables setting the weight, max_conns, max_fails, fail_timeout, backup, down
and sid parameters, as described in server .

ò Note

There is no separate drain (PRO) parameter here; to enable drain, set down to the string value
drain:

$ curl -X PUT -d \"drain\" \
http://127.0.0.1/config/http/upstreams/backend/servers/backend.example.com/down

Example:

$ curl http://127.0.0.1/config/http/upstreams/backend/servers/backend.example.com?
→˓defaults=on

{
"weight": 1,
"max_conns": 0,
"max_fails": 1,
"fail_timeout": 10,
"backup": true,
"down": false,
"sid": ""

}

Actually available parameters are limited to the ones supported by the current load balancing method
of the upstream. So, if the upstream is configured with the random method:

upstream backend {
zone backend 256k;
server backend.example.com resolve max_conns=5;
random;

}

You will be unable to add a new peer that defines backup:

$ curl -X PUT -d '{ "backup": true }' \
http://127.0.0.1/config/http/upstreams/backend/servers/backend1.example.com

{
"error": "FormatError",
"description": "The \"backup\" field is unknown."

}

3.2. References and Indexes 60

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ò Note

Even with a compatible load balancing method, the backup parameter can only be set when adding
a new peer.

/config/stream/upstreams/<upstream>/servers/<name>

Allows configuring individual servers within an upstream, including adding new ones and deleting con-
figured ones.

Parameters in the URI path:

<upstream> Name of the upstream block; to configure it via /config, it must contain
the zone directive that defines a shared memory zone.

<name> Name of a specific server within the specified <upstream>; specified in the
format <service>@<host>, where:

• <service>@ — optional part that specifies the service name for resolv-
ing SRV records.

• <host> — domain name of the service (when resolve is present) or IP
address; port can also be specified.

For example, for the following configuration:

upstream backend {
server backend.example.com:8080 service=_example._tcp resolve;
server 127.0.0.1:12345;
zone backend 1m;

}

These server names are valid:

$ curl http://127.0.0.1/config/stream/upstreams/backend/servers/_example._tcp@backend.
→˓example.com:8080/
$ curl http://127.0.0.1/config/stream/upstreams/backend/servers/127.0.0.1:12345/

This API subsection allows setting the weight, max_conns, max_fails, fail_timeout, backup, and
down parameters described in the server section.

ò Note

There is no separate drain parameter (PRO); to enable drain mode, set the down parameter to the
string value drain:

$ curl -X PUT -d \"drain\" \
http://127.0.0.1/config/stream/upstreams/backend/servers/backend.example.com/down

Example:

curl http://127.0.0.1/config/stream/upstreams/backend/servers/backend.example.com?
→˓defaults=on

{
"weight": 1,
"max_conns": 0,
"max_fails": 1,

3.2. References and Indexes 61

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

"fail_timeout": 10,
"backup": true,
"down": false,

}

Only those parameters that are supported by the current load balancing method of the upstream will
actually be available. For example, if the upstream is configured with the random balancing method:

upstream backend {
zone backend 256k;
server backend.example.com resolve max_conns=5;
random;

}

Then it's impossible to add a new server with the backup parameter:

$ curl -X PUT -d '{ "backup": true }' \
http://127.0.0.1/config/stream/upstreams/backend/servers/backend1.example.com

{
"error": "FormatError",
"description": "The \"backup\" field is unknown."

}

ò Note

Even with a compatible balancing method, the backup parameter can only be set when adding a new
server.

When deleting servers, you can set the connection_drop=<value> argument (PRO) to override the
proxy_connection_drop settings:

$ curl -X DELETE \
http://127.0.0.1/config/stream/upstreams/backend/servers/backend1.example.com?

→˓connection_drop=off

$ curl -X DELETE \
http://127.0.0.1/config/stream/upstreams/backend/servers/backend2.example.com?

→˓connection_drop=on

$ curl -X DELETE \
http://127.0.0.1/config/stream/upstreams/backend/servers/backend3.example.com?

→˓connection_drop=1000

HTTP Methods

Let's consider the semantics of all HTTP methods applicable to this section, given this upstream con-
figuration:

http {
...

upstream backend {
zone upstream 256k;
server backend.example.com resolve max_conns=5;
...

3.2. References and Indexes 62

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

}

server {
...

location /config/ {
api /config/;

allow 127.0.0.1;
deny all;

}
}

}

GET

The GET HTTP method queries an entity at any existing path within /config, just as it does for other
API sections.

For example, the /config/http/upstreams/backend/servers/ upstream server branch enables these
queries:

$ curl http://127.0.0.1/config/http/upstreams/backend/servers/backend.example.com/max_
→˓conns
$ curl http://127.0.0.1/config/http/upstreams/backend/servers/backend.example.com
$ curl http://127.0.0.1/config/http/upstreams/backend/servers
$ # ...
$ curl http://127.0.0.1/config

You can obtain default parameter values with defaults=on:

$ curl http://127.0.0.1/config/http/upstreams/backend/servers?defaults=on

{
"backend.example.com": {

"weight": 1,
"max_conns": 5,
"max_fails": 1,
"fail_timeout": 10,
"backup": false,
"down": false,
"sid": ""

}
}

PUT

The PUT HTTP method creates a new JSON entity at the specified path or entirely replaces an existing
one.

For example, to set the max_fails parameter, not specified earlier, of the backend.example.com server
within the backend upstream:

$ curl -X PUT -d '2' \
http://127.0.0.1/config/http/upstreams/backend/servers/backend.example.com/max_

→˓fails

3.2. References and Indexes 63

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

{
"success": "Updated",
"description": "Existing configuration API entity \"/config/http/upstreams/

→˓backend/servers/backend.example.com/max_fails\" was updated with replacing."
}

Verify the changes:

$ curl http://127.0.0.1/config/http/upstreams/backend/servers/backend.example.com

{
"max_conns": 5,
"max_fails": 2

}

DELETE

The DELETE HTTP method deletes previously defined settings at the specified path; at doing that, it
returns to the default values if there are any.

For example, to delete the previously set max_fails parameter of the backend.example.com server
within the backend upstream:

$ curl -X DELETE \
http://127.0.0.1/config/http/upstreams/backend/servers/backend.example.com/max_

→˓fails

{
"success": "Reset",
"description": "Configuration API entity \"/config/http/upstreams/backend/servers/

→˓backend.example.com/max_fails\" was reset to default."
}

Verify the changes using defaults=on:

$ curl http://127.0.0.1/config/http/upstreams/backend/servers/backend.example.com?
→˓defaults=on

{
"weight": 1,
"max_conns": 5,
"max_fails": 1,
"fail_timeout": 10,
"backup": false,
"down": false,
"sid": ""

}

The max_fails setting is back to its default value.

When deleting servers, you can set the connection_drop=<value> argument (PRO) to override the
proxy_connection_drop, grpc_connection_drop, fastcgi_connection_drop, scgi_connection_drop, and
uwsgi_connection_drop settings:

$ curl -X DELETE \
http://127.0.0.1/config/http/upstreams/backend/servers/backend1.example.com?

→˓connection_drop=off

3.2. References and Indexes 64

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$ curl -X DELETE \
http://127.0.0.1/config/http/upstreams/backend/servers/backend2.example.com?

→˓connection_drop=on

$ curl -X DELETE \
http://127.0.0.1/config/http/upstreams/backend/servers/backend3.example.com?

→˓connection_drop=1000

PATCH

The PATCH HTTP method creates a new entity at the specified path or partially replaces or complements
an existing one (RFC 7386) by supplying a JSON definition in its payload.

The method operates as follows: if the entities from the new definition exist in the configuration, they
are overwritten; otherwise, they are added.

For example, to change the down setting of the backend.example.com server within the backend up-
stream, leaving the rest intact:

$ curl -X PATCH -d '{ "down": true }' \
http://127.0.0.1/config/http/upstreams/backend/servers/backend.example.com

{
"success": "Updated",
"description": "Existing configuration API entity \"/config/http/upstreams/

→˓backend/servers/backend.example.com\" was updated with merging."
}

Verify the changes:

$ curl http://127.0.0.1/config/http/upstreams/backend/servers/backend.example.com

{
"max_conns": 5,
"down": true

}

The JSON object supplied with the PATCH request was merged with the existing one instead of overwriting
it, as would be the case with PUT.

The null values are a corner case; they are used to delete specific configuration items during such merge.

ò Note

This deletion is identical to DELETE; in particular, it reinstates the default values.

For example, to delete the down setting added earlier and simultaneously update max_conns:

$ curl -X PATCH -d '{ "down": null, "max_conns": 6 }' \
http://127.0.0.1/config/http/upstreams/backend/servers/backend.example.com

{
"success": "Updated",
"description": "Existing configuration API entity \"/config/http/upstreams/

→˓backend/servers/backend.example.com\" was updated with merging."
}

3.2. References and Indexes 65

https://datatracker.ietf.org/doc/html/rfc7396

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Verify the changes:

$ curl http://127.0.0.1/config/http/upstreams/backend/servers/backend.example.com

{
"max_conns": 6

}

The down parameter, for which a null was supplied, was deleted; max_conns was updated.

Auth Basic

Allows limiting access to resources by validating the user name and password using the "HTTP Basic
Authentication" protocol.

Access can also be limited by address or by the result of subrequest . Simultaneous limitation of access
by address and by password is controlled by the satisfy directive.

Configuration Example

location / {
auth_basic "closed site";
auth_basic_user_file conf/htpasswd;

}

Directives

auth_basic

Syntax auth_basic string | off;
Default auth_basic off;
Context http, server, location, limit_except

Enables validation of user name and password using the "HTTP Basic Authentication" protocol. The
specified parameter is used as a realm. Parameter value can contain variables.

off cancels the effect of the auth_basic directive inherited from the previous config-
uration level

auth_basic_user_file

Syntax auth_basic_user_file file;
Default —
Context http, server, location, limit_except

Specifies a file that keeps user names and passwords, in the following format:

comment
name1:password1
name2:password2:comment
name3:password3

The file name can contain variables.

The following password types are supported:

3.2. References and Indexes 66

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

• encrypted with the crypt() function; can be generated using the htpasswd utility from the Apache
HTTP Server distribution or the "openssl passwd" command;

• hashed with the Apache variant of the MD5-based password algorithm (apr1); can be generated
with the same tools;

• specified by the "{scheme}data" syntax as described in RFC 2307; currently implemented schemes
include PLAIN (an example one, should not be used), SHA (plain SHA-1 hashing, should not be
used) and SSHA (salted SHA-1 hashing, used by some software packages, notably OpenLDAP and
Dovecot).

³ Caution

Support for SHA scheme was added only to aid in migration from other web servers. It should not
be used for new passwords, since unsalted SHA-1 hashing that it employs is vulnerable to rainbow
table attacks.

Auth Request

Implements client authorization based on the result of a subrequest. If the subrequest returns a 2xx
response code, the access is allowed. If it returns 401 or 403, the access is denied with the corresponding
error code. Any other response code returned by the subrequest is considered an error.

For the 401 error, the client also receives the "WWW-Authenticate" header from the subrequest response.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_auth_request_module build option.

In packages and images from our repos, the module is included in the build.

The module may be combined with other access modules, such as Access and Auth Basic, via the satisfy
directive.

Configuration Example

location /private/ {
auth_request /auth;

...
}

location = /auth {
proxy_pass ...;
proxy_pass_request_body off;
proxy_set_header Content-Length "";
proxy_set_header X-Original-URI $request_uri;

}

Directives

auth_request

Syntax auth_request uri | off;
Default auth_request off;
Context http, server, location

Enables authorization based on the result of a subrequest and sets the URI to which the subrequest will
be sent.

3.2. References and Indexes 67

https://datatracker.ietf.org/doc/html/rfc2307#section-5.3
http://en.wikipedia.org/wiki/Rainbow_attack
http://en.wikipedia.org/wiki/Rainbow_attack

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

auth_request_set

Syntax auth_request_set $variable value;
Default —
Context http, server, location

Sets the request variable to the given value after the authorization request completes. The value may
contain variables from the authorization request, such as $upstream_http_*.

AutoIndex

Serves requests ending with a slash (/) and produces a directory listing. Usually, a request is passed to
the AutoIndex module when the Index module cannot find an index file.

Configuration Example

location / {
autoindex on;

}

Directives

autoindex

Syntax autoindex on | off;
Default autoindex off;
Context http, server, location

Enables or disables the directory listing output.

autoindex_exact_size

Syntax autoindex_exact_size on | off;
Default autoindex_exact_size on;
Context http, server, location

For the HTML format , specifies whether exact file sizes should be output in the directory listing, or
rather rounded to kilobytes, megabytes, and gigabytes.

autoindex_format

Syntax autoindex_format html | xml | json | jsonp;
Default autoindex_format html;
Context http, server, location

Sets the format of a directory listing.

When the JSONP format is used, the name of a callback function is set with the callback request
argument. If the argument is missing or has an empty value, then the JSON format is used.

The XML output can be transformed using the XSLT module.

3.2. References and Indexes 68

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Output Formats

Object fields in responses contain the following data:

Field Description

name File or directory name
type Object type: file or directory
size Object size according to autoindex_exact_size; for directories — 0
mtime Last modification time in Unix time format

HTML

<html>
<head>

<title>Index of /files/</title>
</head>
<body>

<h1>Index of /files/</h1>
<hr>
<pre>

../
example.txt 12-Jun-2025 14:21 ␣

→˓1234
image.png 12-Jun-2025 14:21 ␣

→˓4321
</pre>

<hr>
</body>
</html>

XML

<?xml version="1.0" encoding="UTF-8"?>
<listing>
<file>

<name>example.txt</name>
<type>file</type>
<size>1234</size>
<mtime>2025-06-12T14:21:00Z</mtime>

</file>
<file>

<name>image.png</name>
<type>file</type>
<size>4321</size>
<mtime>2025-06-12T14:21:00Z</mtime>

</file>
</listing>

JSON

[
{

"name": "example.txt",
"type": "file",
"size": 1234,
"mtime": "2025-06-12T14:21:00Z"

},
{

3.2. References and Indexes 69

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

"name": "image.png",
"type": "file",
"size": 4321,
"mtime": "2025-06-12T14:21:00Z"

}
]

JSONP

callback([
{

"name": "example.txt",
"type": "file",
"size": 1234,
"mtime": "2025-06-12T14:21:00Z"

},
{

"name": "image.png",
"type": "file",
"size": 4321,
"mtime": "2025-06-12T14:21:00Z"

}
]);

autoindex_localtime

Syntax autoindex_localtime on | off;
Default autoindex_localtime off;
Context http, server, location

For the HTML format , specifies whether times in the directory listing should be output in the local time
zone or UTC.

Browser

The module creates variables whose values depend on the value of the "User-Agent" request header field.

Variables

$modern_browser

equals the value set by the modern_browser_value directive, if a browser was identified as modern;

$ancient_browser

equals the value set by the ancient_browser_value directive, if a browser was identified as ancient;

$msie

equals "1" if a browser was identified as MSIE of any version.

Configuration Example

3.2. References and Indexes 70

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Choosing an index file:

modern_browser_value "modern.";

modern_browser msie 5.5;
modern_browser gecko 1.0.0;
modern_browser opera 9.0;
modern_browser safari 413;
modern_browser konqueror 3.0;

index index.${modern_browser}html index.html;

Redirection for old browsers:

modern_browser msie 5.0;
modern_browser gecko 0.9.1;
modern_browser opera 8.0;
modern_browser safari 413;
modern_browser konqueror 3.0;

modern_browser unlisted;

ancient_browser Links Lynx netscape4;

if ($ancient_browser) {
rewrite ^ /ancient.html;

}

Directives

ancient_browser

Syntax ancient_browser string ...;
Default —
Context http, server, location

If any of the specified substrings is found in the "User-Agent" request header field, the browser will be
considered ancient. The special string "netscape4" corresponds to the regular expression "^Mozilla/[1-
4]".

ancient_browser_value

Syntax ancient_browser_value string ;
Default ancient_browser_value 1;
Context http, server, location

Sets a value for the $ancient_browser variable.

3.2. References and Indexes 71

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

modern_browser

Syntax modern_browser browser version;
modern_browser unlisted;

Default —
Context http, server, location

Specifies a version starting from which a browser is considered modern. A browser can be any one of the
following: msie, gecko (browsers based on Mozilla), opera, safari, or konqueror.

Versions can be specified in the following formats: X, X.X, X.X.X, or X.X.X.X. The maximum values
for each of the formats are 4000, 4000.99, 4000.99.99, and 4000.99.99.99, respectively.

The special value unlisted specifies to consider a browser as modern if it was not listed by the mod-
ern_browser and ancient_browser directives. Otherwise such a browser is considered ancient. If a
request does not provide the "User-Agent" field in the header, the browser is treated as not being listed.

modern_browser_value

Syntax modern_browser_value string ;
Default modern_browser_value 1;
Context http, server, location

Sets a value for the $modern_browser variable.

Charset

The module adds the specified charset to the "Content-Type" response header field. In addition, the
module can convert data from one charset to another, with some limitations:

• conversion is performed one way — from server to client,

• only single-byte charsets can be converted

• or single-byte charsets to/from UTF-8.

Configuration Example

include conf/koi-win;

charset windows-1251;
source_charset koi8-r;

Directives

charset

Syntax charset charset | off;
Default charset off;
Context http, server, location, if in location

Adds the specified charset to the "Content-Type" response header field. If this charset is different from
the charset specified in the source_charset directive, a conversion is performed.

The parameter off cancels the addition of charset to the "Content-Type" response header field.

A charset can be defined with a variable:

3.2. References and Indexes 72

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

charset $charset;

In such a case, all possible values of a variable need to be present in the configuration at least once
in the form of the charset_map, charset , or source_charset directives. For utf-8, windows-1251, and
koi8-r charsets, it is sufficient to include the files conf/koi-win, conf/koi-utf, and conf/win-utf
into configuration. For other charsets, simply making a fictitious conversion table works, for example:

charset_map iso-8859-5 _ { }

In addition, a charset can be set in the "X-Accel-Charset" response header field. This capabil-
ity can be disabled using the proxy_ignore_headers, fastcgi_ignore_headers, uwsgi_ignore_headers,
scgi_ignore_headers, and grpc_ignore_headers directives.

charset_map

Syntax charset_map charset1 charset2 { ... }
Default —
Context http

Describes the conversion table from one charset to another. A reverse conversion table is built using
the same data. Character codes are given in hexadecimal. Missing characters in the range 80-FF are
replaced with "?". When converting from UTF-8, characters missing in a one-byte charset are replaced
with "&#XXXX;".

Example:

charset_map koi8-r windows-1251 {
C0 FE ; # small yu
C1 E0 ; # small a
C2 E1 ; # small b
C3 F6 ; # small ts

}

When describing a conversion table to UTF-8, codes for the UTF-8 charset should be given in the second
column, for example:

charset_map koi8-r utf-8 {
C0 D18E ; # small yu
C1 D0B0 ; # small a
C2 D0B1 ; # small b
C3 D186 ; # small ts

}

Full conversion tables from koi8-r to windows-1251, and from koi8-r and windows-1251 to utf-8 are
provided in the distribution files conf/koi-win, conf/koi-utf, and conf/win-utf.

charset_types

Syntax charset_types mime-type ...;
Default charset_types text/html text/xml text/plain text/vnd.wap.wml

application/javascript application/rss+xml;
Context http, server, location

Enables module processing in responses with the specified MIME types in addition to text/html. The
special value * matches any MIME type.

3.2. References and Indexes 73

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

override_charset

Syntax override_charset on | off;
Default override_charset off;
Context http, server, location, if in location

Determines whether a conversion should be performed for responses received from a proxied or a
FastCGI/uwsgi/SCGI/gRPC server when the responses already carry a charset in the "Content-Type"
response header field. If conversion is enabled, a charset specified in the received response is used as a
source charset.

ò Note

If a response is received in a subrequest then the conversion from the response charset to the main
request charset is always performed, regardless of the override_charset directive setting.

source_charset

Syntax source_charset charset ;
Default —
Context http, server, location, if in location

Defines the source charset of a response. If this charset is different from the charset specified in the
charset directive, a conversion is performed.

DAV

The module is intended for file management automation via the WebDAV protocol. The module processes
HTTP and WebDAV methods PUT, DELETE, MKCOL, COPY, and MOVE.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_dav_module build option.

In packages and images from our repos, the module is included in the build.

s Important

WebDAV clients that require additional WebDAV methods to operate will not work with this module.

Configuration Example

location / {
root /data/www;

client_body_temp_path /data/client_temp;

dav_methods PUT DELETE MKCOL COPY MOVE;

create_full_put_path on;
dav_access group:rw all:r;

limit_except GET {
allow 192.168.1.0/32;

3.2. References and Indexes 74

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

deny all;
}

}

Directives

create_full_put_path

Syntax create_full_put_path on | off;
Default create_full_put_path off;
Context http, server, location

The WebDAV specification only allows creating files in already existing directories. This directive allows
creating all needed intermediate directories.

dav_access

Syntax dav_access users:permissions ...;
Default dav_access user:rw;
Context http, server, location

Sets access permissions for newly created files and directories, e.g.:

dav_access user:rw group:rw all:r;

If any group or all access permissions are specified then user permissions may be omitted:

dav_access group:rw all:r;

dav_methods

Syntax dav_methods off | method ...;
Default dav_methods off;
Context http, server, location

Allows the specified HTTP and WebDAV methods. The parameter off denies all methods processed by
this module. The following methods are supported: PUT, DELETE, MKCOL, COPY, and MOVE.

A file uploaded with the PUT method is first written to a temporary file, and then the file is renamed.
Starting from version 0.8.9, temporary files and the persistent store can be put on different file systems.
However, be aware that in this case a file is copied across two file systems instead of the cheap renaming
operation. It is thus recommended that for any given location both saved files and a directory holding
temporary files, set by the client_body_temp_path directive, are put on the same file system.

When creating a file with the PUT method, it is possible to specify the modification date by passing it
in the Date header field.

min_delete_depth

Syntax min_delete_depth number ;
Default min_delete_depth 0;
Context http, server, location

3.2. References and Indexes 75

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Allows the DELETE method to remove files provided that the number of elements in a request path is
not less than the specified number. For example, the directive

min_delete_depth 4;

allows removing files on requests

/users/00/00/name
/users/00/00/name/pic.jpg
/users/00/00/page.html

and denies the removal of

/users/00/00

Docker

The module provides dynamic configuration of proxied server groups in both HTTP and stream contexts
based on Docker container labels. For the functionality to work, a shared memory zone must be configured
in the group (see the zone description for http and stream).

ò Note

The module supports working with both Docker and its alternatives, such as Podman, which imple-
ment a compatible API.

The module connects to the Docker daemon via API, the interaction method with which is specified by
the docker_endpoint directive. After obtaining a list of running containers, Angie analyzes them for the
presence of suitable labels. If a container description contains a label with a port, then the address and
port of such a container, as well as parameters from other labels of this container, are automatically
added to the corresponding upstream block in the Angie configuration.

ò Note

The same container can be added to multiple upstream groups; just specify multiple sets of labels
with different group names and ports.

This is especially useful if the container runs several different services on different ports; each service
can be associated with its own group.

The module then subscribes to container lifecycle events and begins updating the proxied server config-
uration without reloading Angie:

• when starting a container with suitable labels, its internal IP address is added to the specified
group;

• when stopping or removing a container, it is automatically removed from the group;

• when pausing a container with the docker pause command, the server is marked as down, and
with docker unpause — as up.

Configuration Example

The module's directives are always located in the http context, but proxied server groups can be defined
in both the http context and the stream context.

Configuration example for http:

3.2. References and Indexes 76

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

http {

Examples of connection options:
docker_endpoint http://127.0.0.1:2375;
docker_endpoint https://127.0.0.1:2376;
docker_endpoint unix:/var/run/docker.sock;

maximum Docker response buffer size (optional)
docker_max_object_size 128k;

upstream u {

zone z 1m; # shared memory zone is required
}

server {

listen 80;
server_name example.com;

location / {

proxy_pass http://u;
}

}
}

Similarly in stream context:

http {

Examples of connection options:
docker_endpoint http://127.0.0.1:2375;
docker_endpoint https://127.0.0.1:2376;
docker_endpoint unix:/var/run/docker.sock;

maximum Docker response buffer size (optional)
docker_max_object_size 128k;

}

stream {

upstream u {

zone z 1m;
}

server {

listen 12345;
proxy_pass u;

}
}

Upon receiving an event for a container, Angie looks for labels of the form angie.http.upstreams.
<name>.port=<port> (for HTTP context) or angie.stream.upstreams.<name>.port=<port> (for
stream context). When a label is present, the container's address in the specified Docker network (or
the first available one if the angie.network label is not specified) is added to the corresponding proxied

3.2. References and Indexes 77

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

server group.

If a container stops or is removed, the server is removed from the group; if a container is paused, the
server is marked as down.

Fragment of a docker-compose.yml file with labels that Angie recognizes:

services:
myapp:

image: myapp:latest
labels:

- "angie.http.upstreams.u.port=8080"
- "angie.network=my_bridge"
- "angie.http.upstreams.u.weight=2"
- "angie.http.upstreams.u.max_conns=50"
- "angie.http.upstreams.u.max_fails=3"
- "angie.http.upstreams.u.fail_timeout=10s"
- "angie.http.upstreams.u.backup=true"

Labels

Labels specify server parameters in the proxied server group similar to the arguments of the server
directive:

Label Purpose

angie.(http|stream).
upstreams.<name>.
port=<port> (required)

Container port that Angie will connect to; the container itself is
added to the group named <name>.

angie.
network=<docker-network>

Name of the Docker network from which to take the container's IP
address.

angie.(http|stream).
upstreams.<name>.
weight=<n>

Value of the weight parameter.

angie.(http|stream).
upstreams.<name>.
max_conns=<n>

Maximum number of simultaneous connections (max_conns).

angie.(http|stream).
upstreams.<name>.
max_fails=<n>

Threshold for failed attempts (max_fails).

angie.(http|stream).
upstreams.<name>.
fail_timeout=<t>

Interval for counting failed attempts (fail_timeout).

angie.(http|stream).
upstreams.<name>.
backup=true|false

Marks the server as backup.

angie.(http|stream).
upstreams.<name>.
sid=<string>

Sets a custom server identifier (sid) for the proxied server.

angie.(http|stream).
upstreams.<name>.
slow_start=<time>

Enables slow_start mode with a configurable time period.

Directives

3.2. References and Indexes 78

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

docker_endpoint

Syntax docker_endpoint URL;
Default —
Context http

Specifies the method of connecting to the Docker daemon and enables tracking of container events. The
following options are supported:

unix:/var/run/
docker.sock

Connection via Unix socket (e.g., /var/run/docker.sock).

http://
host:port,
https://
host:port

Connection via HTTP or HTTPS to a remote Docker API.

The connection can be additionally configured using the client context, where the module adds two
named location blocks:

• @docker_events is used to receive container events;

• @docker_containers — to get container information.

By default, they contain the proxy_pass directive with the connection address and several other optimal
default settings, to which other settings from the Proxy module can be added.

If the directive is specified, Angie opens a connection to Docker using the specified method, requests a
list of running containers, analyzes their labels and processes all subsequent container events, adding or
removing servers in proxied server groups according to the labels.

� Tip

To access the Docker daemon via Unix socket (/var/run/docker.sock or another), the user which
Angie runs as must have read and write permissions for this socket.

docker_max_object_size

Syntax docker_max_object_size <size>;
Default 64k
Context http

Sets the maximum buffer size that is used for both JSON responses to Docker requests and for the
container event stream.

• For regular requests (API version, container list, container information): the entire response must
fit in the buffer, otherwise an error occurs.

• For container events, streaming processing is used with buffer reuse, which allows processing an
unlimited stream of events.

The typical value of 64k is sufficient for approximately 25 containers.

When Docker API connection errors or response processing errors occur, the module automatically
retries at specific time intervals. The maximum number of retry attempts for getting information about
a specific container is limited to two additional attempts; after that, the module stops attempting for
that container.

3.2. References and Indexes 79

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Empty GIF

The module emits a single-pixel transparent GIF.

Configuration Example

location = /_.gif {
empty_gif;

}

Directives

empty_gif

Syntax empty_gif;
Default —
Context location

Enables emitting a single-pixel transparent GIF in the containing location.

FastCGI

The module allows passing requests to a FastCGI server.

Configuration Example

location / {
fastcgi_pass localhost:9000;
fastcgi_index index.php;

fastcgi_param SCRIPT_FILENAME /home/www/scripts/php$fastcgi_script_name;
fastcgi_param QUERY_STRING $query_string;
fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param CONTENT_TYPE $content_type;
fastcgi_param CONTENT_LENGTH $content_length;

}

Directives

fastcgi_bind

Syntax fastcgi_bind address [transparent] | off;
Default —
Context http, server, location

Makes outgoing connections to a FastCGI server originate from the specified local IP address with an
optional port. Parameter value can contain variables. The special value off cancels the effect of the
fastcgi_bind directive inherited from the previous configuration level, which allows the system to auto-
assign the local IP address and port.

The transparent parameter allows outgoing connections to a FastCGI server originate from a non-local
IP address, for example, from a real IP address of a client:

fastcgi_bind $remote_addr transparent;

3.2. References and Indexes 80

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

For this parameter to work, Angie worker processes usually need to run with superuser privileges. On
Linux, this is not required: if the transparent parameter is specified, worker processes inherit the
CAP_NET_RAW capability from the master process.

s Important

The kernel routing table should also be configured to intercept network traffic from the FastCGI
server.

fastcgi_buffer_size

Syntax fastcgi_buffer_size size;
Default fastcgi_buffer_size 4k|8k;
Context http, server, location

Sets the size of the buffer used for reading the first part of the response received from the FastCGI server.
This part usually contains a small response header. By default, the buffer size is equal to one memory
page. This is either 4K or 8K, depending on a platform. It can be made smaller, however.

fastcgi_buffering

Syntax fastcgi_buffering on | off;
Default fastcgi_buffering on;
Context http, server, location

Enables or disables buffering of responses from the FastCGI server.

on Angie receives a response from the FastCGI server as soon as possible, saving
it into the buffers set by the fastcgi_buffer_size and fastcgi_buffers directives.
If the whole response does not fit into memory, a part of it can be saved to
a temporary file on the disk. Writing to temporary files is controlled by the
fastcgi_max_temp_file_size and fastcgi_temp_file_write_size directives.

off the response is passed to a client synchronously, immediately as it is received.
Angie will not try to read the whole response from the FastCGI server. The
maximum size of the data that Angie can receive from the server at a time is set
by the fastcgi_buffer_size directive.

Buffering can also be enabled or disabled by passing "yes" or "no" in the "X-Accel-Buffering" response
header field. This capability can be disabled using the fastcgi_ignore_headers directive.

fastcgi_buffers

Syntax fastcgi_buffers number size;
Default fastcgi_buffers 8 4k|8k;
Context http, server, location

Sets the number and size of the buffers used for reading a response from the FastCGI server, for a single
connection.

By default, the buffer size is equal to one memory page. This is either 4K or 8K, depending on a platform.

3.2. References and Indexes 81

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

fastcgi_busy_buffers_size

Syntax fastcgi_busy_buffers_size size;
Default fastcgi_busy_buffers_size 8k|16k;
Context http, server, location

When buffering of responses from the FastCGI server is enabled, limits the total size of buffers that can
be busy sending a response to the client while the response is not yet fully read. In the meantime, the
rest of the buffers can be used for reading the response and, if needed, buffering part of the response to
a temporary file. By default, size is limited by the size of two buffers set by the fastcgi_buffer_size and
fastcgi_buffers directives.

fastcgi_cache

Syntax fastcgi_cache zone | off;
Default fastcgi_cache off;
Context http, server, location

Defines a shared memory zone used for caching. The same zone can be used in several places. Parameter
value can contain variables. The off parameter disables caching inherited from the previous configuration
level.

fastcgi_cache_background_update

Syntax fastcgi_cache_background_update on | off;
Default fastcgi_cache_background_update off;
Context http, server, location

Allows starting a background subrequest to update an expired cache item, while a stale cached response
is returned to the client. Note that it is necessary to allow the usage of a stale cached response when it
is being updated.

fastcgi_cache_bypass

Syntax fastcgi_cache_bypass string ...;
Default —
Context http, server, location

Defines conditions under which the response will not be taken from a cache. If at least one value of the
string parameters is not empty and is not equal to "0" then the response will not be taken from the
cache:

fastcgi_cache_bypass $cookie_nocache $arg_nocache$arg_comment;
fastcgi_cache_bypass $http_pragma $http_authorization;

Can be used along with the fastcgi_no_cache directive.

fastcgi_cache_key

Syntax fastcgi_cache_key string ;
Default —
Context http, server, location

3.2. References and Indexes 82

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Defines a key for caching, for example

fastcgi_cache_key localhost:9000$request_uri;

fastcgi_cache_lock

Syntax fastcgi_cache_lock on | off;
Default fastcgi_cache_lock off;
Context http, server, location

When enabled, only one request at a time will be allowed to populate a new cache element identified
according to the fastcgi_cache_key directive by passing a request to a FastCGI server. Other requests
of the same cache element will either wait for a response to appear in the cache or the cache lock for this
element to be released, up to the time set by the fastcgi_cache_lock_timeout directive.

fastcgi_cache_lock_age

Syntax fastcgi_cache_lock_age time;
Default fastcgi_cache_lock_age 5s;
Context http, server, location

If the last request sent to the FastCGI server to fill a new cache entry has not completed in the specified
time, another request may be sent to the FastCGI server.

fastcgi_cache_lock_timeout

Syntax fastcgi_cache_lock_timeout time;
Default fastcgi_cache_lock_timeout 5s;
Context http, server, location

Sets a timeout for fastcgi_cache_lock . When the time expires, the request will be passed to the FastCGI
server, however, the response will not be cached.

fastcgi_cache_max_range_offset

Syntax fastcgi_cache_max_range_offset number ;
Default —
Context http, server, location

Sets an offset in bytes for byte-range requests. If the range is beyond the offset, the range request will
be passed to the FastCGI server and the response will not be cached.

fastcgi_cache_methods

Syntax fastcgi_cache_methods GET | HEAD | POST ...;
Default fastcgi_cache_methods GET HEAD;
Context http, server, location

If the client request method is listed in this directive then the response will be cached. "GET" and
"HEAD" methods are always added to the list, though it is recommended to specify them explicitly. See
also the fastcgi_no_cache directive.

3.2. References and Indexes 83

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

fastcgi_cache_min_uses

Syntax fastcgi_cache_min_uses number ;
Default fastcgi_cache_min_uses 1;
Context http, server, location

Sets the number of requests after which the response will be cached.

fastcgi_cache_path

Syntax fastcgi_cache_path path [levels=levels] [use_temp_path=on | off]
keys_zone=name:size [inactive=time] [max_size=size] [min_free=size]
[manager_files=number] [manager_sleep=time] [manager_threshold=time]
[loader_files=number] [loader_sleep=time] [loader_threshold=time];

Default —
Context http, server, location

Sets the path and other parameters of a cache. Cache data are stored in files. Both the key and file
name in a cache are a result of applying the MD5 function to the proxied URL.

The levels parameter defines hierarchy levels of a cache: from 1 to 3, each level accepts values 1 or 2.
For example, in the following configuration

fastcgi_cache_path /data/angie/cache levels=1:2 keys_zone=one:10m;

file names in a cache will look like this:

/data/angie/cache/c/29/b7f54b2df7773722d382f4809d65029c

A cached response is first written to a temporary file, and then the file is renamed. Temporary files and
the cache can be put on different file systems. However, be aware that in this case a file is copied across
two file systems instead of the cheap renaming operation. It is thus recommended that for any given
location both cache and a directory holding temporary files are put on the same file system.

A directory for temporary files is set based on the use_temp_path parameter.

on If this parameter is omitted or set to the value on, the directory set by the
fastcgi_temp_path directive for the given location will be used.

off temporary files will be put directly in the cache directory.

In addition, all active keys and information about data are stored in a shared memory zone, whose name
and size are configured by the keys_zone parameter. One megabyte zone can store about 8 thousand
keys.

Cached data that are not accessed during the time specified by the inactive parameter get removed
from the cache regardless of their freshness.

By default, inactive is set to 10 minutes.

A special cache manager process monitors the maximum cache size, and the minimum amount of free
space on the file system with cache. When the size is exceeded or there is not enough free space, it
removes the least recently used data. The data is removed in iterations.

3.2. References and Indexes 84

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

max_size maximum cache size
min_free minimum amount of free space on the file system with cache
manager_files limits the number of items to be deleted during one iteration

By default, 100.
manager_threshold limits the duration of one iteration

By default, 200 milliseconds
manager_sleep configures a pause between interactions

By default, 50 milliseconds

A minute after Angie starts, the special cache loader process is activated. It loads information about
previously cached data stored on file system into a cache zone. The loading is also done in iterations.

loader_files maximum number of cache items to load in one iteration
Default: 100

loader_threshold limits the time of one iteration
Default: 200 milliseconds

loader_sleep time for which a pause is maintained between iterations
Default: 50 milliseconds

fastcgi_cache_revalidate

Syntax fastcgi_cache_revalidate on | off;
Default fastcgi_cache_revalidate off;
Context http, server, location

Enables revalidation of expired cache items using conditional requests with the "If-Modified-Since" and
"If-None-Match" header fields.

fastcgi_cache_use_stale

Syntax fastcgi_cache_use_stale error | timeout | invalid_header | updating |
http_500 | http_503 | http_403 | http_429 | off ...;

Default fastcgi_cache_use_stale off;
Context http, server, location

Determines in which cases a stale cached response can be used when an error occurs during com-
munication with the FastCGI server. The directive's parameters match the parameters of the
fastcgi_next_upstream directive.

error permits using a stale cached response if a FastCGI server to process a request
cannot be selected.

updating additional parameter, permits using a stale cached response if it is currently being
updated. This allows minimizing the number of accesses to FastCGI servers when
updating cached data.

Using a stale cached response can also be enabled directly in the response header for a specified number
of seconds after the response became stale.

• The stale-while-revalidate extension of the "Cache-Control" header field permits using a stale
cached response if it is currently being updated.

• The stale-if-error extension of the "Cache-Control" header field permits using a stale cached re-
sponse in case of an error.

3.2. References and Indexes 85

https://datatracker.ietf.org/doc/html/rfc5861#section-3
https://datatracker.ietf.org/doc/html/rfc5861#section-4

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ò Note

This has lower priority than using the directive parameters.

To minimize the number of accesses to FastCGI servers when populating a new cache element, the
fastcgi_cache_lock directive can be used.

fastcgi_cache_valid

Syntax fastcgi_cache_valid [code ...] time;
Default —
Context http, server, location

Sets caching time for different response codes. For example, the following directives

fastcgi_cache_valid 200 302 10m;
fastcgi_cache_valid 404 1m;

set 10 minutes of caching for responses with codes 200 and 302 and 1 minute for responses with code
404.

If only caching time is specified

fastcgi_cache_valid 5m;

then only 200, 301, and 302 responses are cached.

In addition, the any parameter can be specified to cache any responses:

fastcgi_cache_valid 200 302 10m;
fastcgi_cache_valid 301 1h;
fastcgi_cache_valid any 1m;

ò Note

Parameters of caching can also be set directly in the response header. This has higher priority than
setting of caching time using the directive.

• The "X-Accel-Expires" header field sets caching time of a response in seconds. The zero value
disables caching for a response. If the value starts with the @ prefix, it sets an absolute time in
seconds since Epoch, up to which the response may be cached.

• If the header does not include the "X-Accel-Expires" field, parameters of caching may be set in the
header fields "Expires" or "Cache-Control".

• If the header includes the "Set-Cookie" field, such a response will not be cached.

• If the header includes the "Vary" field with the special value "*", such a response will not be
cached. If the header includes the "Vary" field with another value, such a response will be cached
taking into account the corresponding request header fields.

Processing of one or more of these response header fields can be disabled using the fastcgi_ignore_headers
directive.

3.2. References and Indexes 86

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

fastcgi_catch_stderr

Syntax fastcgi_catch_stderr string ;
Default —
Context http, server, location

Sets a string to search for in the error stream of a response received from a FastCGI server. If the string
is found then it is considered that the FastCGI server has returned an invalid response. This allows
handling application errors in Angie, for example:

location /php/ {
fastcgi_pass backend:9000;
...
fastcgi_catch_stderr "PHP Fatal error";
fastcgi_next_upstream error timeout invalid_header;

}

fastcgi_connect_timeout

Syntax fastcgi_connect_timeout time;
Default fastcgi_connect_timeout 60s;
Context http, server, location

Defines a timeout for establishing a connection with a FastCGI server. It should be noted that this
timeout cannot usually exceed 75 seconds.

fastcgi_connection_drop

Syntax fastcgi_connection_drop time | on | off;
Default fastcgi_connection_drop off;
Context http, server, location

Enables termination of all connections to the proxied server after it has been removed from the group or
marked as permanently unavailable by a reresolve process or the API command DELETE.

A connection is terminated when the next read or write event is processed for either the client or the
proxied server.

Setting time enables a connection termination timeout ; with on set, connections are dropped immediately.

fastcgi_force_ranges

Syntax fastcgi_force_ranges on | off;
Default fastcgi_force_ranges off;
Context http, server, location

Enables byte-range support for both cached and uncached responses from the FastCGI server regardless
of the "Accept-Ranges" field in these responses.

3.2. References and Indexes 87

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

fastcgi_hide_header

Syntax fastcgi_hide_header field ;
Default —
Context http, server, location

By default, Angie does not pass the header fields Status and X-Accel-... from the response of a
FastCGI server to a client. The fastcgi_hide_header directive sets additional fields that will not be
passed. If, on the contrary, the passing of fields needs to be permitted, the fastcgi_pass_header directive
can be used.

fastcgi_ignore_client_abort

Syntax fastcgi_ignore_client_abort on | off;
Default fastcgi_ignore_client_abort off;
Context http, server, location

Determines whether the connection with a FastCGI server should be closed when a client closes the
connection without waiting for a response.

fastcgi_ignore_headers

Syntax fastcgi_ignore_headers field ;
Default —
Context http, server, location

Disables processing of certain response header fields from the FastCGI server. The following fields can be
ignored: "X-Accel-Redirect", "X-Accel-Expires", "X-Accel-Limit-Rate", "X-Accel-Buffering", "X-Accel-
Charset", "Expires", "Cache-Control", "Set-Cookie", and "Vary".

If not disabled, processing of these header fields has the following effect:

• "X-Accel-Expires", "Expires", "Cache-Control", "Set-Cookie", and "Vary" set the parameters of
response caching;

• "X-Accel-Redirect" performs an internal redirect to the specified URI;

• "X-Accel-Limit-Rate" sets the rate limit for transmission of a response to a client;

• "X-Accel-Buffering" enables or disables buffering of a response;

• "X-Accel-Charset" sets the desired charset of a response.

fastcgi_index

Syntax fastcgi_index name;
Default —
Context http, server, location

Sets a file name that will be appended after a URI that ends with a slash, in the value of the
$fastcgi_script_name variable. For example, with these settings

fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME /home/www/scripts/php$fastcgi_script_name;

3.2. References and Indexes 88

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

and the /page.php request, the SCRIPT_FILENAME parameter will be equal to /home/www/scripts/
php/page.php,

and with the / request it will be equal to /home/www/scripts/php/index.php.

fastcgi_intercept_errors

Syntax fastcgi_intercept_errors on | off;
Default fastcgi_intercept_errors off;
Context http, server, location

Determines whether FastCGI server responses with codes greater than or equal to 300 should be passed
to a client or be intercepted and redirected to Angie for processing with the error_page directive.

fastcgi_keep_conn

Syntax fastcgi_keep_conn on | off;
Default fastcgi_keep_conn off;
Context http, server, location

By default, a FastCGI server will close a connection right after sending the response. However, when
this directive is set to the value on, Angie will instruct a FastCGI server to keep connections open. This
is necessary, in particular, for keepalive connections to FastCGI servers to function.

fastcgi_limit_rate

Syntax fastcgi_limit_rate rate;
Default fastcgi_limit_rate 0;
Context http, server, location

Limits the speed of reading the response from the FastCGI server. The rate is specified in bytes per
second and can contain variables.

0 disables rate limiting

ò Note

The limit is set per a request, and so if Angie simultaneously opens two connections to the FastCGI
server, the overall rate will be twice as much as the specified limit. The limitation works only if
buffering of responses from the FastCGI server is enabled.

fastcgi_max_temp_file_size

Syntax fastcgi_max_temp_file_size size;
Default fastcgi_max_temp_file_size 1024m;
Context http, server, location

When buffering of responses from the FastCGI server is enabled, and the whole response does not fit
into the buffers set by the fastcgi_buffer_size and fastcgi_buffers directives, a part of the response can

3.2. References and Indexes 89

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

be saved to a temporary file. This directive sets the maximum size of the temporary file. The size of
data written to the temporary file at a time is set by the fastcgi_temp_file_write_size directive.

0 disables buffering of responses to temporary files

ò Note

This restriction does not apply to responses that will be cached or stored on disk .

fastcgi_next_upstream

Syntax fastcgi_next_upstream error | timeout | invalid_header | http_500 | http_503
| http_403 | http_404 | http_429 | non_idempotent | off ...;

Default fastcgi_next_upstream error timeout;
Context http, server, location

Specifies in which cases a request should be passed to the next server:

error an error occurred while establishing a connection with the server, passing a re-
quest to it, or reading the response header;

timeout a timeout has occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

invalid_header a server returned an empty or invalid response;
http_500 a server returned a response with the code 500;
http_503 a server returned a response with the code 503;
http_403 a server returned a response with the code 403;
http_404 a server returned a response with the code 404;
http_429 a server returned a response with the code 429;
non_idempotent normally, requests with a non-idempotent method (POST, LOCK, PATCH) are not

passed to the next server if a request has been sent to an upstream server; enabling
this option explicitly allows retrying such requests;

off disables passing a request to the next server.

ò Note

One should bear in mind that passing a request to the next server is only possible if nothing has
been sent to a client yet. That is, if an error or timeout occurs in the middle of the transferring of a
response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt of communication with a server.

error
timeout
invalid_header

always considered unsuccessful attempts, even if they are not specified in the
directive

http_500
http_503
http_429

considered unsuccessful attempts only if they are specified in the directive

http_403
http_404

never considered unsuccessful attempts

Passing a request to the next server can be limited by the number of tries and by time.

3.2. References and Indexes 90

https://datatracker.ietf.org/doc/html/rfc7231#section-4-2-2

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

fastcgi_next_upstream_timeout

Syntax fastcgi_next_upstream_timeout time;
Default fastcgi_next_upstream_timeout 0;
Context http, server, location

Limits the time during which a request can be passed to the next server .

0 turns off this limitation

fastcgi_next_upstream_tries

Syntax fastcgi_next_upstream_tries number ;
Default fastcgi_next_upstream_tries 0;
Context http, server, location

Limits the number of possible tries for passing a request to the next server .

0 turns off this limitation

fastcgi_no_cache

Syntax fastcgi_no_cache string ...;
Default —
Context http, server, location

Defines conditions under which the response will not be saved to a cache. If at least one value of the
string parameters is not empty and is not equal to "0" then the response will not be saved:

fastcgi_no_cache $cookie_nocache $arg_nocache$arg_comment;
fastcgi_no_cache $http_pragma $http_authorization;

Can be used along with the fastcgi_cache_bypass directive.

fastcgi_param

Syntax fastcgi_param parameter value [if_not_empty];
Default —
Context http, server, location

Sets a parameter that should be passed to the FastCGI server. The value can contain text, variables,
and their combination. These directives are inherited from the previous configuration level if and only if
there are no fastcgi_param directives defined on the current level.

The following example shows the minimum required settings for PHP:

fastcgi_param SCRIPT_FILENAME /home/www/scripts/php$fastcgi_script_name;
fastcgi_param QUERY_STRING $query_string;

3.2. References and Indexes 91

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

The SCRIPT_FILENAME parameter is used in PHP for determining the script name, and the
QUERY_STRING parameter is used to pass request parameters.

For scripts that process POST requests, the following three parameters are also required:

fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param CONTENT_TYPE $content_type;
fastcgi_param CONTENT_LENGTH $content_length;

If PHP was built with the --enable-force-cgi-redirect configuration parameter, the REDIRECT_STATUS
parameter should also be passed with the value "200":

fastcgi_param REDIRECT_STATUS 200;

If the directive is specified with if_not_empty then such a parameter will be passed to the server only
if its value is not empty:

fastcgi_param HTTPS $https if_not_empty;

fastcgi_pass

Syntax fastcgi_pass address;
Default —
Context location, if in location

Sets the address of a FastCGI server. The address can be specified as a domain name or IP address, and
a port:

fastcgi_pass localhost:9000;

or as a UNIX domain socket path:

fastcgi_pass unix:/tmp/fastcgi.socket;

If a domain name resolves to several addresses, all of them will be used in a round-robin fashion. In
addition, an address can be specified as a server group.

Parameter value can contain variables. In this case, if an address is specified as a domain name, the
name is searched among the described server groups, and, if not found, is determined using a resolver .

fastcgi_pass_header

Syntax fastcgi_pass_header field ;
Default —
Context http, server, location

Permits passing otherwise disabled header fields from a FastCGI server to a client.

fastcgi_pass_request_body

Syntax fastcgi_pass_request_body on | off;
Default fastcgi_pass_request_body on;
Context http, server, location

Indicates whether the original request body is passed to the FastCGI server. See also the
fastcgi_pass_request_headers directive.

3.2. References and Indexes 92

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

fastcgi_pass_request_headers

Syntax fastcgi_pass_request_headers on | off;
Default fastcgi_pass_request_headers on;
Context http, server, location

Indicates whether the header fields of the original request are passed to the FastCGI server. See also the
fastcgi_pass_request_body directive.

fastcgi_read_timeout

Syntax fastcgi_read_timeout time;
Default fastcgi_read_timeout 60s;
Context http, server, location

Defines a timeout for reading a response from the FastCGI server. The timeout is set only between two
successive read operations, not for the transmission of the whole response. If the FastCGI server does
not transmit anything within this time, the connection is closed.

fastcgi_request_buffering

Syntax fastcgi_request_buffering on | off;
Default fastcgi_request_buffering on;
Context http, server, location

Enables or disables buffering of a client request body.

on the entire request body is read from the client before sending the request to a
FastCGI server.

off the request body is sent to the FastCGI server immediately as it is received.
In this case, the request cannot be passed to the next server , if Angie already
started sending the request body.

fastcgi_send_lowat

Syntax fastcgi_send_lowat size;
Default fastcgi_send_lowat 0;
Context http, server, location

If the directive is set to a non-zero value, Angie will try to minimize the number of send operations on
outgoing connections to a FastCGI server by using either NOTE_LOWAT flag of the kqueue method,
or the SO_SNDLOWAT socket option, with the specified size.

ò Note

This directive is ignored on Linux, Solaris, and Windows.

3.2. References and Indexes 93

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

fastcgi_send_timeout

Syntax fastcgi_send_timeout time;
Default fastcgi_send_timeout 60s;
Context http, server, location

Sets a timeout for transmitting a request to the FastCGI server. The timeout is set only between two
successive write operations, not for the transmission of the whole request. If the FastCGI server does
not receive anything within this time, the connection is closed.

fastcgi_socket_keepalive

Syntax fastcgi_socket_keepalive on | off;
Default fastcgi_socket_keepalive off;
Context http, server, location

Configures the "TCP keepalive" behavior for outgoing connections to a FastCGI server.

off By default, the operating system's settings are in effect for the socket.
on the SO_KEEPALIVE socket option is turned on for the socket.

fastcgi_split_path_info

Syntax fastcgi_split_path_info regex ;
Default —
Context location

Defines a regular expression that captures a value for the $fastcgi_path_info variable. The regular
expression should have two captures: the first becomes a value of the $fastcgi_script_name variable,
the second becomes a value of the $fastcgi_path_info variable. For example, with these settings

location ~ ^(.+\.php)(.*)$ {
fastcgi_split_path_info ^(.+\.php)(.*)$;
fastcgi_param SCRIPT_FILENAME /path/to/php$fastcgi_script_name;
fastcgi_param PATH_INFO $fastcgi_path_info;

and the /show.php/article/0001 request, the SCRIPT_FILENAME parameter will be equal to /path/to/
php/show.php, and the PATH_INFO parameter will be equal to /article/0001.

fastcgi_store

Syntax fastcgi_store on | off | string ;
Default fastcgi_store off;
Context http, server, location

Enables saving of files to a disk.

on saves files with paths corresponding to the directives alias or root .
off disables saving of files

In addition, the file name can be set explicitly using the string with variables:

3.2. References and Indexes 94

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

fastcgi_store /data/www$original_uri;

The modification time of files is set according to the received "Last-Modified" response header field.
The response is first written to a temporary file, and then the file is renamed. Temporary files and the
persistent store can be put on different file systems. However, be aware that in this case a file is copied
across two file systems instead of the cheap renaming operation. It is thus recommended that for any
given location both saved files and a directory holding temporary files, set by the fastcgi_temp_path
directive, are put on the same file system.

This directive can be used to create local copies of static unchangeable files, e.g.:

location /images/ {
root /data/www;
error_page 404 = /fetch$uri;

}

location /fetch/ {
internal;

fastcgi_pass backend:9000;
...

fastcgi_store on;
fastcgi_store_access user:rw group:rw all:r;
fastcgi_temp_path /data/temp;

alias /data/www/;
}

fastcgi_store_access

Syntax fastcgi_store_access users:permissions ...;
Default fastcgi_store_access user:rw;
Context http, server, location

Sets access permissions for newly created files and directories, e.g.:

fastcgi_store_access user:rw group:rw all:r;

If any group or all access permissions are specified then user permissions may be omitted:

fastcgi_store_access group:rw all:r;

fastcgi_temp_file_write_size

Syntax fastcgi_temp_file_write_size size;
Default fastcgi_temp_file_write_size 8k|16k;
Context http, server, location

Limits the size of data written to a temporary file at a time, when buffering of responses from the
FastCGI server to temporary files is enabled. By default, size is limited by two buffers set by the
fastcgi_buffer_size and fastcgi_buffers directives. The maximum size of a temporary file is set by the
fastcgi_max_temp_file_size directive.

3.2. References and Indexes 95

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

fastcgi_temp_path

Syntax fastcgi_temp_path path [level1 [level2 [level3]]]`;
Default fastcgi_temp_path fastcgi_temp; (the path depends on the

--http-fastcgi-temp-path build option)
Context http, server, location

Defines a directory for storing temporary files with data received from FastCGI servers. Up to three-
level subdirectory hierarchy can be used underneath the specified directory. For example, in the following
configuration

fastcgi_temp_path /spool/angie/fastcgi_temp 1 2;

a temporary file might look like this:

/spool/angie/fastcgi_temp/7/45/00000123457

See also the use_temp_path parameter of the fastcgi_cache_path directive.

Parameters Passed to a FastCGI Server

HTTP request header fields are passed to a FastCGI server as parameters. In applications and scripts
running as FastCGI servers, these parameters are usually made available as environment variables. For
example, the "User-Agent" header field is passed as the HTTP_USER_AGENT parameter. In addition
to HTTP request header fields, it is possible to pass arbitrary parameters using the fastcgi_param
directive.

Built-in Variables

The http_fastcgi module supports built-in variables that can be used to set parameters using the
fastcgi_param directive:

$fastcgi_script_name

Request URI or, if a URI ends with a slash, request URI with an index file name configured by the
fastcgi_index directive appended to it. This variable can be used to set the SCRIPT_FILENAME and
PATH_TRANSLATED parameters that are used, in particular, to determine the script name in PHP.
For example, for the /info/ request with the following directives

fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME /home/www/scripts/php$fastcgi_script_name;

the SCRIPT_FILENAME parameter will be equal to /home/www/scripts/php/info/index.php.

When using the fastcgi_split_path_info directive, the $fastcgi_script_name variable equals the value
of the first capture set by the directive.

$fastcgi_path_info

The value of the second capture set by the fastcgi_split_path_info directive. This variable can be used
to set the PATH_INFO parameter.

FLV

The module provides pseudo-streaming server-side support for Flash Video (FLV) files.

It handles requests with the start argument in the request URI's query string specially, by sending back
the contents of a file starting from the requested byte offset and with the prepended FLV header.

3.2. References and Indexes 96

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_flv_module build option.

In packages and images from our repos, the module is included in the build.

Configuration Example

location ~ \.flv$ {
flv;

}

Directives

flv

Syntax flv;
Default —
Context location

Turns on module processing in a surrounding location.

Geo

The module creates variables with values depending on the client IP address.

Configuration Example

geo $geo {
default 0;

127.0.0.1 2;
192.168.1.0/24 1;
10.1.0.0/16 1;

::1 2;
2001:0db8::/32 1;

}

Directives

geo

Syntax geo [$address] $variable { ... }
Default —
Context http

Describes the dependency of values of the specified variable on the client IP address. By default, the
address is taken from the $remote_addr variable, but it can also be taken from another variable, for
example:

geo $arg_remote_addr $geo {
...;

}

3.2. References and Indexes 97

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ò Note

Since variables are evaluated only when used, the mere existence of even a large number of declared
geo variables does not cause any extra costs for request processing.

If the value of a variable does not represent a valid IP address then the "255.255.255.255" address is
used.

Addresses are specified either as prefixes in CIDR notation (including individual addresses) or as ranges.

The following special parameters are also supported:

delete deletes the specified network
default the value set to the variable if the client address does not match any of the

specified addresses. When addresses are specified in CIDR notation, 0.0.0.0/0
and ::/0 can be used instead of default. When default is not specified, the
default value will be an empty string

include includes a file with addresses and values. There can be several inclusions.
proxy defines trusted addresses. When a request comes from a trusted address, an

address from the X-Forwarded-For request header field will be used instead. In
contrast to the regular addresses, trusted addresses are checked sequentially.

proxy_recursive enables recursive address search. If recursive search is disabled then instead of the
original client address that matches one of the trusted addresses, the last address
sent in X-Forwarded-For will be used. If recursive search is enabled then instead
of the original client address that matches one of the trusted addresses, the last
non-trusted address sent in X-Forwarded-For will be used.

ranges indicates that addresses are specified as ranges. This parameter should be the
first. To speed up loading of a geo base, addresses should be put in ascending
order.

Example:

geo $country {
default ZZ;
include conf/geo.conf;
delete 127.0.0.0/16;
proxy 192.168.100.0/24;
proxy 2001:0db8::/32;

127.0.0.0/24 US;
127.0.0.1/32 RU;
10.1.0.0/16 RU;
192.168.1.0/24 UK;

}

The conf/geo.conf file could contain the following lines:

10.2.0.0/16 RU;
192.168.2.0/24 RU;

The value of the most specific match is used. For example, for the 127.0.0.1 address, the value RU will
be chosen, not US.

Sample range description:

geo $country {
ranges;
default ZZ;

3.2. References and Indexes 98

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

127.0.0.0-127.0.0.0 US;
127.0.0.1-127.0.0.1 RU;
127.0.0.2-127.0.0.255 US;
10.1.0.0-10.1.255.255 RU;
192.168.1.0-192.168.1.255 UK;

}

GeoIP

Creates variables with values depending on the client IP address, using the precompiled MaxMind
databases or their counterparts.

When using the databases with IPv6 support, IPv4 addresses are looked up as IPv4-mapped IPv6
addresses.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_geoip_module build option.

s Important

This module requires the MaxMind GeoIP database or a counterpart such as MaxMind GeoLite2.

Configuration Example

http {
geoip_country GeoIP.dat;
geoip_city GeoLiteCity.dat;
geoip_proxy 192.168.100.0/24;
geoip_proxy 2001:0db8::/32;
geoip_proxy_recursive on;
...

Directives

geoip_country

Syntax geoip_country file;
Default —
Context http

Specifies a database used to determine the country depending on the client IP address. The following
variables are available when using this database:

$geoip_country_codetwo-letter country code, for example, "RU", "US".
$geoip_country_code3three-letter country code, for example, "RUS", "USA".
$geoip_country_namecountry name, for example, "Russian Federation", "United States".

geoip_city

Syntax geoip_city file;
Default —
Context http

3.2. References and Indexes 99

http://www.maxmind.com/
https://www.maxmind.com/en/geoip-databases
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Specifies a database used to determine the country, region, and city depending on the client IP address.
The following variables are available when using this database:

$geoip_city_continent_codetwo-letter continent code, for example, "EU", "NA".
$geoip_city_country_codetwo-letter country code, for example, "RU", "US".
$geoip_city_country_code3three-letter country code, for example, "RUS", "USA".
$geoip_city_country_namecountry name, for example, "Russian Federation", "United States".
$geoip_dma_code DMA region code in US (also known as "metro code"), according to the geotar-

geting in Google AdWords API.
$geoip_latitude latitude.
$geoip_longitude longitude.
$geoip_region two-symbol country region code (region, territory, state, province, federal land

and the like), for example, "48", "DC".
$geoip_region_namecountry region name (region, territory, state, province, federal land and the like),

for example, "Moscow City", "District of Columbia".
$geoip_city city name, for example, "Moscow", "Washington".
$geoip_postal_codepostal code.

geoip_org

Syntax geoip_org file;
Default —
Context http

Specifies a database used to determine the organization depending on the client IP address. The following
variable is available when using this database:

$geoip_org organization name, for example, "The University of Melbourne".

geoip_proxy

Syntax geoip_proxy address | CIDR | unix:;
Default —
Context http

Defines trusted addresses. When a request comes from a trusted address, an address from the
X-Forwarded-For request header field will be used instead.

geoip_proxy_recursive

Syntax geoip_proxy_recursive on | off;
Default geoip_proxy_recursive off;
Context http

If recursive search is disabled then instead of the original client address that matches one of the trusted
addresses, the last address sent in X-Forwarded-For will be used. If recursive search is enabled then
instead of the original client address that matches one of the trusted addresses, the last non-trusted
address sent in X-Forwarded-For will be used.

3.2. References and Indexes 100

https://developers.google.com/adwords/api/docs/appendix/cities-DMAregions
https://developers.google.com/adwords/api/docs/appendix/cities-DMAregions

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

gRPC

Allows passing requests to a gRPC server.

s Important

This module requires the HTTP2 module.

Configuration Example

server {
listen 9000;

http2 on;

location / {
grpc_pass 127.0.0.1:9000;

}
}

Directives

grpc_bind

Syntax grpc_bind address [transparent] | off;
Default —
Context http, server, location

Makes outgoing connections to a gRPC server originate from the specified local IP address with an
optional port. Parameter value can contain variables. The special value off cancels the effect of the
grpc_bind directive inherited from the previous configuration level, which allows the system to auto-
assign the local IP address and port.

The transparent parameter allows outgoing connections to a gRPC server originate from a non-local
IP address, for example, from a real IP address of a client:

grpc_bind $remote_addr transparent;

In order for this parameter to work, it is usually necessary to run Angie worker processes with the
superuser privileges. On Linux it is not required as if the transparent parameter is specified, worker
processes inherit the CAP_NET_RAW capability from the master process.

s Important

It is necessary to configure kernel routing table to intercept network traffic from the gRPC server.

grpc_buffer_size

Syntax grpc_buffer_size size;
Default grpc_buffer_size 4k|8k;
Context http, server, location

3.2. References and Indexes 101

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Sets the size of the buffer used for reading the first part of the response received from the gRPC server.
The response is passed to the client synchronously, as soon as it is received.

grpc_connect_timeout

Syntax grpc_connect_timeout time;
Default grpc_connect_timeout 60s;
Context http, server, location

Defines a timeout for establishing a connection with a gRPC server. It should be noted that this timeout
cannot usually exceed 75 seconds.

grpc_connection_drop

Syntax grpc_connection_drop time | on | off;
Default grpc_connection_drop off;
Context http, server, location

Enables termination of all connections to the proxied server after it has been removed from the group or
marked as permanently unavailable by a reresolve process or the API command DELETE.

A connection is terminated when the next read or write event is processed for either the client or the
proxied server.

Setting time enables a connection termination timeout ; with on set, connections are dropped immediately.

grpc_hide_header

Syntax grpc_hide_header field ;
Default —
Context http, server, location

By default, Angie does not pass the header fields Date, Server, and X-Accel-... from the response of a
gRPC server to a client. The grpc_hide_header directive sets additional fields that will not be passed.
If, on the contrary, the passing of fields needs to be permitted, the grpc_pass_header directive can be
used.

grpc_ignore_headers

Syntax grpc_ignore_headers field ...;
Default —
Context http, server, location

Disables processing of certain response header fields from the gRPC server. The following fields can be
ignored: "X-Accel-Redirect" and "X-Accel-Charset".

If not disabled, processing of these header fields has the following effect:

• "X-Accel-Redirect" performs an internal redirect to the specified URI;

• "X-Accel-Charset" sets the desired charset of a response.

3.2. References and Indexes 102

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

grpc_intercept_errors

Syntax grpc_intercept_errors on | off;
Default grpc_intercept_errors off;
Context http, server, location

Determines whether gRPC responses with codes greater than or equal to 300 should be passed to a client
or be intercepted and redirected to Angie for processing with the error_page directive.

grpc_next_upstream

Syntax grpc_next_upstream error | timeout | invalid_header | http_500 | http_502 |
http_503 | http_504 | http_403 | http_404 | http_429 | non_idempotent | off ...;

Default grpc_next_upstream error timeout;
Context http, server, location

Specifies in which cases a request should be passed to the next server in the upstream pool :

error an error occurred while establishing a connection with the server, passing a re-
quest to it, or reading the response header;

timeout a timeout has occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

invalid_header a server returned an empty or invalid response;
http_500 a server returned a response with the code 500;
http_502 a server returned a response with the code 502;
http_503 a server returned a response with the code 503;
http_504 a server returned a response with the code 504;
http_403 a server returned a response with the code 403;
http_404 a server returned a response with the code 404;
http_429 a server returned a response with the code 429;
non_idempotent normally, requests with a non-idempotent method (POST, LOCK, PATCH) are not

passed to the next server if a request has been sent to an upstream server; enabling
this option explicitly allows retrying such requests;

off disables passing a request to the next server.

ò Note

One should bear in mind that passing a request to the next server is only possible if nothing has
been sent to a client yet. That is, if an error or timeout occurs in the middle of the transferring of a
response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt of communication with a server.

error, timeout,
invalid_header

always considered unsuccessful attempts, even if they are not specified in the
directive

http_500,
http_502,
http_503,
http_504,
http_429

considered unsuccessful attempts only if they are specified in the directive

http_403,
http_404

never considered unsuccessful attempts

3.2. References and Indexes 103

https://datatracker.ietf.org/doc/html/rfc7231#section-4-2-2

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Passing a request to the next server can be limited by the number of tries and by time.

grpc_next_upstream_timeout

Syntax grpc_next_upstream_timeout time;
Default grpc_next_upstream_timeout 0;
Context http, server, location

Limits the time during which a request can be passed to the next server.

0 turns off this limitation

grpc_next_upstream_tries

Syntax grpc_next_upstream_tries number ;
Default grpc_next_upstream_tries 0;
Context http, server, location

Limits the number of possible tries for passing a request to the next server.

0 turns off this limitation

grpc_pass

Syntax grpc_pass address;
Default —
Context location, if in location

Sets gRPC server address. The address can be specified as a domain name or IP address, and a port:

grpc_pass localhost:9000;

or as a UNIX domain socket path:

grpc_pass unix:/tmp/grpc.socket;

Alternatively, the grpc:// scheme can be used:

grpc_pass grpc://127.0.0.1:9000;

To use gRPC over SSL, the grpcs:// scheme should be used:

grpc_pass grpcs://127.0.0.1:443;

If a domain name resolves to several addresses, all of them will be used in a round-robin fashion. In
addition, an address can be specified as a server group.

Parameter value can contain variables. In this case, if an address is specified as a domain name, the
name is searched among the described server groups, and, if not found, is determined using a resolver .

3.2. References and Indexes 104

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

grpc_pass_header

Syntax grpc_pass_header field ;
Default —
Context http, server, location

Permits passing otherwise disabled header fields from a gRPC server to a client.

grpc_read_timeout

Syntax grpc_read_timeout time;
Default grpc_read_timeout 60s;
Context http, server, location

Defines a timeout for reading a response from the gRPC server. The timeout is set only between two
successive read operations, not for the transmission of the whole response. If the gRPC server does not
transmit anything within this time, the connection is closed.

grpc_send_timeout

Syntax grpc_send_timeout time;
Default grpc_send_timeout 60s;
Context http, server, location

Sets a timeout for transmitting a request to the gRPC server. The timeout is set only between two
successive write operations, not for the transmission of the whole request. If the gRPC server does not
receive anything within this time, the connection is closed.

grpc_set_header

Syntax grpc_set_header field value;
Default grpc_set_header Content-Length $content_length;
Context http, server, location

Allows redefining or appending fields to the request header passed to the gRPC server. The value
can contain text, variables, and their combinations. These directives are inherited from the previous
configuration level if and only if there are no grpc_set_header directives defined on the current level.

If the value of a header field is an empty string then this field will not be passed to a gRPC server:

grpc_set_header Accept-Encoding "";

grpc_socket_keepalive

Syntax grpc_socket_keepalive on | off;
Default grpc_socket_keepalive off;
Context http, server, location

Configures the "TCP keepalive" behavior for outgoing connections to a gRPC server.

3.2. References and Indexes 105

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

"" By default, the operating system's settings are in effect for the socket.
on The SO_KEEPALIVE socket option is turned on for the socket.

grpc_ssl_certificate

Syntax grpc_ssl_certificate file;
Default —
Context http, server, location

Specifies a file with the certificate in the PEM format used for authentication to a gRPC SSL server.
Variables can be used in the file name.

grpc_ssl_certificate_cache

Syntax grpc_ssl_certificate_cache off;
grpc_ssl_certificate_cache max=N [inactive=time] [valid=time];

Default grpc_ssl_certificate_cache off;
Context http, server, location

Defines a cache that stores SSL certificates and secret keys specified using variables.

The directive supports the following parameters:

• max — sets the maximum number of elements in the cache. When the cache overflows, the least
recently used (LRU) elements are removed.

• inactive — defines the time after which an element is removed if it has not been accessed. The
default is 10 seconds.

• valid — defines the time during which a cached element is considered valid and can be reused.
The default is 60 seconds. After this period, certificates are reloaded or revalidated.

• off — disables the cache.

Example:

grpc_ssl_certificate $grpc_ssl_server_name.crt;
grpc_ssl_certificate_key $grpc_ssl_server_name.key;
grpc_ssl_certificate_cache max=1000 inactive=20s valid=1m;

grpc_ssl_certificate_key

Syntax grpc_ssl_certificate_key file;
Default —
Context http, server, location

Specifies a file with the secret key in the PEM format used for authentication to a gRPC SSL server.

The value engine:`name`:id can be specified instead of the file, which loads a secret key with a specified
id from the OpenSSL engine name.

Variables can be used in the file name.

3.2. References and Indexes 106

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

grpc_ssl_ciphers

Syntax grpc_ssl_ciphers ciphers;
Default grpc_ssl_ciphers DEFAULT;
Context http, server, location

Specifies the enabled ciphers for requests to a gRPC SSL server. The ciphers are specified in the format
understood by the OpenSSL library.

The list of ciphers depends on the version of OpenSSL installed. The full list can be viewed using the
openssl ciphers command.

. Attention

The grpc_ssl_ciphers directive does not configure ciphers for TLS 1.3 when using OpenSSL. To
tune TLS 1.3 ciphers with OpenSSL, use the grpc_ssl_conf_command directive, which was added
to support advanced SSL configuration.

• In LibreSSL, TLS 1.3 ciphers can be configured using grpc_ssl_ciphers.

• In BoringSSL, TLS 1.3 ciphers cannot be configured at all.

grpc_ssl_conf_command

Syntax grpc_ssl_conf_command name value;
Default —
Context http, server, location

Sets arbitrary OpenSSL configuration commands when establishing a connection with the gRPC SSL
server.

s Important

The directive is supported when using OpenSSL 1.0.2 or higher. To configure TLS 1.3 ciphers with
OpenSSL, use the ciphersuites command.

Several grpc_ssl_conf_command directives can be specified on the same level. These directives are
inherited from the previous configuration level if and only if there are no grpc_ssl_conf_command
directives defined on the current level.

³ Caution

Note that configuring OpenSSL directly might result in unexpected behavior.

grpc_ssl_crl

Syntax grpc_ssl_crl file;
Default —
Context http, server, location

Specifies a file with revoked certificates (CRL) in the PEM format used to verify the certificate of the
gRPC SSL server.

3.2. References and Indexes 107

https://docs.openssl.org/master/man3/SSL_CONF_cmd/

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

grpc_ssl_name

Syntax grpc_ssl_name name;
Default grpc_ssl_name `host from grpc_pass;`
Context http, server, location

Allows overriding the server name used to verify the certificate of the gRPC SSL server and to be passed
through SNI when establishing a connection with the gRPC SSL server.

By default, the host part of the grpc_pass URL is used.

grpc_ssl_password_file

Syntax grpc_ssl_password_file file;
Default —
Context http, server, location

Specifies a file with passphrases for secret keys where each passphrase is specified on a separate line.
Passphrases are tried in turn when loading the key.

grpc_ssl_protocols

Syntax grpc_ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1] [TLSv1.2] [TLSv1.3];
Default grpc_ssl_protocols TLSv1.2 TLSv1.3;
Context http, server, location

Changed in version 1.2.0: TLSv1.3 parameter added to default set.

Enables the specified protocols for requests to a gRPC SSL server.

grpc_ssl_server_name

Syntax grpc_ssl_server_name on | off;
Default grpc_ssl_server_name off;
Context http, server, location

Enables or disables passing the server name set by the grpc_ssl_name directive via the Server Name
Indication TLS extension (SNI, RFC 6066) while establishing a connection with the gRPC SSL server.

grpc_ssl_session_reuse

Syntax grpc_ssl_session_reuse on | off;
Default grpc_ssl_session_reuse on;
Context http, server, location

Determines whether SSL sessions can be reused when working with the gRPC server. If the errors
"SSL3_GET_FINISHED:digest check failed" appear in the logs, try disabling session reuse.

3.2. References and Indexes 108

http://en.wikipedia.org/wiki/Server_Name_Indication
http://en.wikipedia.org/wiki/Server_Name_Indication
https://datatracker.ietf.org/doc/html/rfc6066.html

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

grpc_ssl_trusted_certificate

Syntax grpc_ssl_trusted_certificate file;
Default —
Context http, server, location

Specifies a file with trusted CA certificates in the PEM format used to verify the certificate of the gRPC
SSL server.

grpc_ssl_verify

Syntax grpc_ssl_verify on | off;
Default grpc_ssl_verify off;
Context http, server, location

Enables or disables verification of the gRPC SSL server certificate.

grpc_ssl_verify_depth

Syntax grpc_ssl_verify_depth number ;
Default grpc_ssl_verify_depth 1;
Context http, server, location

Sets the verification depth in the gRPC SSL server certificates chain.

GunZIP

The module is a filter that decompresses responses with "Content-Encoding: gzip" for clients that do not
support "gzip" encoding method. The module will be useful when it is desirable to store data compressed
to save space and reduce I/O costs.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_gunzip_module build option.

In packages and images from our repos, the module is included in the build.

Configuration Example

location /storage/ {
gunzip on;

...
}

Directives

gunzip

Syntax gunzip on | off;
Default gunzip off;
Context http, server, location

Enables or disables decompression of gzipped responses for clients that lack gzip support. If en-
abled, the following directives are also taken into account when determining if clients support gzip:
gzip_http_version, gzip_proxied and gzip_disable. See also the gzip_vary directive.

3.2. References and Indexes 109

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

gunzip_buffers

Syntax gunzip_buffers number size;
Default gunzip_buffers 32 4k | 16 8k;
Context http, server, location

Sets the number and size of buffers used to decompress a response. By default, the buffer size is equal
to one memory page. This is either 4K or 8K, depending on a platform.

GZip

The module is a filter that compresses responses using the "gzip" method. This often helps to reduce
the size of transmitted data by half or even more.

³ Caution

When using the SSL/TLS protocol, compressed responses may be subject to BREACH attacks.

Configuration Example

gzip on;
gzip_min_length 1000;
gzip_proxied expired no-cache no-store private auth;
gzip_types text/plain application/xml;

The $gzip_ratio variable can be used to log the achieved compression ratio.

Directives

gzip

Syntax gzip on | off;
Default gzip off;
Context http, server, location, if in location

Enables or disables gzipping of responses.

gzip_buffers

Syntax gzip_buffers number size;
Default gzip_buffers 32 4k | 16 8k;
Context http, server, location

Sets the number and size of buffers used to compress a response. By default, the buffer size is equal to
one memory page. This is either 4K or 8K, depending on a platform.

gzip_comp_level

Syntax gzip_comp_level level ;
Default gzip_comp_level 1;
Context http, server, location

3.2. References and Indexes 110

https://en.wikipedia.org/wiki/BREACH

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Sets a gzip compression level of a response. Acceptable values are in the range from 1 to 9.

gzip_disable

Syntax gzip_disable regex ...;
Default —
Context http, server, location

Disables gzipping of responses for requests with "User-Agent" header fields matching any of the specified
regular expressions.

The special mask msie6 corresponds to the regular expression "MSIE [4-6].", but works faster. "MSIE
6.0; ... SV1" is excluded from this mask.

gzip_http_version

Syntax gzip_http_version 1.0 | 1.1;
Default gzip_http_version 1.1;
Context http, server, location

Sets the minimum HTTP version of a request required to compress a response.

gzip_min_length

Syntax gzip_min_length length;
Default gzip_min_length 20;
Context http, server, location

Sets the minimum length of a response that will be gzipped. The length is determined only from the
"Content-Length" response header field.

gzip_proxied

Syntax gzip_proxied off | expired | no-cache | no-store | private | no_last_modified
| no_etag | auth | any ...;

Default gzip_proxied off;
Context http, server, location

Enables or disables gzipping of responses for proxied requests depending on the request and response.
The fact that the request is proxied is determined by the presence of the "Via" request header field. The
directive accepts multiple parameters:

3.2. References and Indexes 111

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

off disables compression for all proxied requests, ignoring other parameters;
expired enables compression if a response header includes the "Expires" field with a value

that disables caching;
no-cache enables compression if a response header includes the "Cache-Control" field with

the "no-cache" parameter;
no-store enables compression if a response header includes the "Cache-Control" field with

the "no-store" parameter;
private enables compression if a response header includes the "Cache-Control" field with

the "private" parameter;
no_last_modified enables compression if a response header does not include the "Last-Modified"

field;
no_etag enables compression if a response header does not include the "ETag" field;
auth enables compression if a request header includes the "Authorization" field;
any enables compression for all proxied requests.

gzip_types

Syntax gzip_types mime-type ...;
Default gzip_types text/html;
Context http, server, location

Enables gzipping of responses for the specified MIME types in addition to text/html. The special value
"*" matches any MIME type. Responses with the text/html type are always compressed.

gzip_vary

Syntax gzip_vary on | off;
Default gzip_vary off;
Context http, server, location

Enables or disables inserting the "Vary: Accept-Encoding" response header field if the directives gzip,
gzip_static or gunzip are active.

Built-in Variables

$gzip_ratio

achieved compression ratio, computed as the ratio between the original and compressed response sizes.

GZip Static

Allows sending precompressed files with the ".gz" filename extension instead of regular files.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_gzip_static_module build option.

In packages and images from our repos, the module is included in the build.

Configuration Example

gzip_static on;
gzip_proxied expired no-cache no-store private auth;

3.2. References and Indexes 112

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Directives

gzip_static

Syntax gzip_static on | off | always;
Default gzip_static off;
Context http, server, location

Enables (on) or disables (off) checking the existence of precompressed files. The following directives are
also taken into account: gzip_http_version, gzip_proxied , gzip_disable and gzip_vary .

With always, gzipped files are used in all cases, without checking if the client supports it. This is useful
if there are no uncompressed files on the disk anyway or the GunZIP module is used.

The files can be compressed using the gzip command, or any other compatible one. It is recommended
that the modification date and time of original and compressed files be the same.

Headers

Allows adding the "Expires" and "Cache-Control" header fields, and arbitrary fields, to a response
header.

Configuration Example

expires 24h;
expires modified +24h;
expires @24h;
expires 0;
expires -1;
expires epoch;
expires $expires;
add_header Cache-Control private;

Directives

add_header

Syntax add_header name value [always];
Default —
Context http, server, location, if in location

Adds the specified field to a response header provided that the response code equals 200, 201 (1.3.10),
204, 206, 301, 302, 303, 304, 307, or 308. Parameter value can contain variables.

There could be several add_header directives. These directives are inherited from the previous configu-
ration level if and only if there are no add_header directives defined on the current level.

If the always parameter is specified, the header field will be added regardless of the response code.

add_trailer

Syntax add_trailer name value [always];
Default —
Context http, server, location, if in location

3.2. References and Indexes 113

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Adds the specified field to the end of a response provided that the response code equals 200, 201, 206,
301, 302, 303, 307, or 308. Parameter value can contain variables.

There could be several add_trailer directives. These directives are inherited from the previous config-
uration level if and only if there are no add_trailer directives defined on the current level.

If the always parameter is specified, the specified field will be added regardless of the response code.

expires

Syntax expires [modified] time;
expires epoch | max | off;

Default expires off;
Context http, server, location, if in location

Enables or disables adding or modifying the "Expires" and "Cache-Control" response header fields pro-
vided that the response code equals 200, 201, 204, 206, 301, 302, 303, 304, 307, or 308. The parameter
can be a positive or negative time.

The time in the "Expires" field is computed as a sum of the current time and time specified in the
directive. If the modified parameter is used, then the time is computed as a sum of the file's modification
time and the time specified in the directive.

In addition, it is possible to specify a time of day using the "@" prefix:

expires @15h30m;

The contents of the "Cache-Control" field depends on the sign of the specified time:

• time is negative — "Cache-Control: no-cache".

• time is positive or zero — "Cache-Control: max-age=`t`", where t is a time specified in the
directive, in seconds.

epoch sets "Expires" to the value "Thu, 01 Jan 1970 00:00:01 GMT", and "Cache-
Control" to "no-cache".

max sets "Expires" to the value "Thu, 31 Dec 2037 23:55:55 GMT", and "Cache-
Control" to 10 years.

off disables adding or modifying the "Expires" and "Cache-Control" response header
fields.

The last parameter value can contain variables:

map $sent_http_content_type $expires {
default off;
application/pdf 42d;
~image/ max;

}

expires $expires;

Image Filter

The module is a filter that transforms images in JPEG, GIF, PNG, and WebP formats.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_image_filter_module build option.

In our repositories, the module is built dynamically and is available as a separate package named
angie-module-image-filter or angie-pro-module-image-filter.

3.2. References and Indexes 114

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

s Important

This module utilizes the libgd library. It is recommended to use the latest available version of the
library.

To transform images in WebP format, the libgd library must be compiled with WebP support.

Configuration Example

location /img/ {
proxy_pass http://backend;
image_filter resize 150 100;
image_filter rotate 90;
error_page 415 = /empty;

}

location = /empty {
empty_gif;

}

Directives

image_filter

Syntax • image_filter off;
• image_filter test;
• image_filter size;
• image_filter rotate 90 | 180 | 270;
• image_filter resize width height ;
• image_filter crop width height ;

Default image_filter off;
Context location

Sets the type of transformation to perform on images:

off turns off module processing in a surrounding location.
test ensures that responses are images in either JPEG, GIF, PNG, or WebP format.

Otherwise, the 415 (Unsupported Media Type) error is returned.
size outputs information about images in a JSON format, e.g.: "img" : {

"width": 100, "height": 100, "type": "gif" } In case of an error,
the output is as follows: {}

rotate
90|180|270

rotates images counter-clockwise by the specified number of degrees. Parameter
value can contain variables. This mode can be used either alone or along with
the resize and crop transformations.

resize width
height

proportionally reduces an image to the specified sizes. To reduce by only one
dimension, another dimension can be specified as "-". In case of an error, the
server will return code 415 (Unsupported Media Type). Parameter values can
contain variables. When used along with the rotate parameter, the rotation
happens after reduction.

crop width height proportionally reduces an image to the larger side size and crops extraneous edges
by another side. To reduce by only one dimension, another dimension can be
specified as "-". In case of an error, the server will return code 415 (Unsupported
Media Type). Parameter values can contain variables. When used along with
the rotate parameter, the rotation happens before reduction.

3.2. References and Indexes 115

http://libgd.org/

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

image_filter_buffer

Syntax image_filter_buffer size;
Default image_filter_buffer 1M;
Context http, server, location

Sets the maximum size of the buffer used for reading images. When the size is exceeded the server
returns error 415 (Unsupported Media Type).

image_filter_interlace

Syntax image_filter_interlace on | off;
Default image_filter_interlace off;
Context http, server, location

If enabled, final images will be interlaced. For JPEG, final images will be in "progressive JPEG" format.

image_filter_jpeg_quality

Syntax image_filter_jpeg_quality quality ;
Default image_filter_jpeg_quality 75;
Context http, server, location

Sets the desired quality of the transformed JPEG images. Acceptable values are in the range from 1
to 100. Lesser values usually imply both lower image quality and less data to transfer. The maximum
recommended value is 95. Parameter value can contain variables.

image_filter_sharpen

Syntax image_filter_sharpen percent ;
Default image_filter_sharpen 0;
Context http, server, location

Increases sharpness of the final image. The sharpness percentage can exceed 100. The 0 value disables
sharpening. Parameter value can contain variables.

image_filter_transparency

Syntax image_filter_transparency on | off;
Default image_filter_transparency on;
Context http, server, location

Defines whether transparency should be preserved when transforming GIF images or PNG images with
colors specified by a palette. The loss of transparency results in images of a better quality. The alpha
channel transparency in PNG is always preserved.

image_filter_webp_quality

Syntax image_filter_webp_quality quality ;
Default image_filter_webp_quality 80;
Context http, server, location

3.2. References and Indexes 116

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Sets the desired quality of the transformed WebP images. Acceptable values are in the range from 1 to
100. Lesser values usually imply both lower image quality and less data to transfer. Parameter value
can contain variables.

Index

The module processes requests ending with the slash character (/). Such requests can also be processed
by the http_autoindex and http_random_index modules.

Configuration Example

location / {
index index.$geo.html index.html;

}

Directives

index

Syntax index file ...;
Default index index.html;
Context http, server, location

Defines files that will be used as an index. The file name can contain variables. Files are checked in the
specified order. The last element of the list can be a file with an absolute path. Example:

index index.$geo.html index.0.html /index.html;

It should be noted that using an index file causes an internal redirect, and the request can be processed
in a different location. For example, with the following configuration:

location = / {
index index.html;

}

location / {
...
}

A "/" request will actually be processed in the second location as "/index.html".

JS

The module is used to implement handlers in njs — a subset of the JavaScript language.

In our repositories, the module is built dynamically and is available as a separate package named
angie-module-njs or angie-pro-module-njs.

ò Note

A lightweight version of the package, named ...-njs-light, is also available; however, it can't be
used side by side with the regular one.

3.2. References and Indexes 117

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Configuration Example

http {
js_import http.js;

js_set $foo http.foo;
js_set $summary http.summary;
js_set $hash http.hash;

resolver 127.0.0.53;

server {
listen 8000;

location / {
add_header X-Foo $foo;
js_content http.baz;

}

location = /summary {
return 200 $summary;

}

location = /hello {
js_content http.hello;

}

location = /fetch {
js_content http.fetch;
js_fetch_trusted_certificate /path/to/ISRG_Root_X1.pem;

}

location = /crypto {
add_header Hash $hash;
return 200;

}
}

}

The http.js file:

function foo(r) {
r.log("hello from foo() handler");
return "foo";

}

function summary(r) {
var a, s, h;

s = "JS summary\n\n";

s += "Method: " + r.method + "\n";
s += "HTTP version: " + r.httpVersion + "\n";
s += "Host: " + r.headersIn.host + "\n";
s += "Remote Address: " + r.remoteAddress + "\n";
s += "URI: " + r.uri + "\n";

s += "Headers:\n";

3.2. References and Indexes 118

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

for (h in r.headersIn) {
s += " header '" + h + "' is '" + r.headersIn[h] + "'\n";

}

s += "Args:\n";
for (a in r.args) {

s += " arg '" + a + "' is '" + r.args[a] + "'\n";
}

return s;
}

function baz(r) {
r.status = 200;
r.headersOut.foo = 1234;
r.headersOut['Content-Type'] = "text/plain; charset=utf-8";
r.headersOut['Content-Length'] = 15;
r.sendHeader();
r.send("nginx");
r.send("java");
r.send("script");

r.finish();
}

function hello(r) {
r.return(200, "Hello world!");

}

async function fetch(r) {
let results = await Promise.all([ngx.fetch('https://google.com/'),

ngx.fetch('https://google.ru/')]);

r.return(200, JSON.stringify(results, undefined, 4));
}

async function hash(r) {
let hash = await crypto.subtle.digest('SHA-512', r.headersIn.host);
r.setReturnValue(Buffer.from(hash).toString('hex'));

}

export default {foo, summary, baz, hello, fetch, hash};

Directives

js_body_filter

Syntax js_body_filter function | module.function [buffer_type=string | buffer];
Default —
Context location, if in location, limit_except

Sets an njs function as a response body filter. The filter function is called for each data chunk of a
response body with the following arguments:

3.2. References and Indexes 119

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

r the HTTP request object
data the incoming data chunk, may be a string or Buffer depending on the buffer_type

value, by default is a string.
flags an object with the following properties: - last — a boolean value, true if data

is the last buffer

The filter function can pass its own modified version of the input data chunk to the next body filter by
calling r.sendBuffer(). For example, to transform all the lowercase letters in the response body:

function filter(r, data, flags) {
r.sendBuffer(data.toLowerCase(), flags);

}

To stop filtering (following data chunks will be passed to client without calling js_body_filter), r.done()
can be used.

If the filter function changes the length of the response body, then it is required to clear out the "Content-
Length" response header (if any) in js_header_filter to enforce chunked transfer encoding.

ò Note

As the js_body_filter handler returns its result immediately, it supports only synchronous operations.
Thus, asynchronous operations such as r.subrequest() or setTimeout() are not supported.

js_content

Syntax js_content function | module.function;
Default —
Context location, if in location, limit_except

Sets an njs function as a location content handler. Module functions can be referenced.

js_fetch_buffer_size

Syntax js_fetch_buffer_size size;
Default js_fetch_buffer_size 16k;
Context http, server, location

Sets the size of the buffer used for reading and writing with Fetch API.

js_fetch_ciphers

Syntax js_fetch_ciphers ciphers;
Default js_fetch_ciphers HIGH:!aNULL:!MD5;
Context http, server, location

Specifies the enabled ciphers for HTTPS connections with Fetch API. The ciphers are specified in the
format understood by the OpenSSL library.

The list of ciphers depends on the version of OpenSSL installed. The full list can be viewed using the
openssl ciphers command.

3.2. References and Indexes 120

https://nginx.org/en/docs/njs/reference.html#http
https://nginx.org/en/docs/njs/reference.html#r_sendbuffer
https://nginx.org/en/docs/njs/reference.html#r_done
https://nginx.org/en/docs/njs/reference.html#r_subrequest
https://nginx.org/en/docs/njs/reference.html#settimeout
https://nginx.org/en/docs/njs/reference.html#ngx_fetch
https://nginx.org/en/docs/njs/reference.html#ngx_fetch

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

js_fetch_max_response_buffer_size

Syntax js_fetch_max_response_buffer_size size;
Default js_fetch_max_response_buffer_size 1m;
Context http, server, location

Sets the maximum size of the response received with Fetch API.

js_fetch_protocols

Syntax js_fetch_protocols [TLSv1] [TLSv1.1] [TLSv1.2] [TLSv1.3];
Default js_fetch_protocols TLSv1 TLSv1.1 TLSv1.2;
Context http, server, location

Enables the specified protocols for HTTPS connections with Fetch API.

js_fetch_timeout

Syntax js_fetch_timeout time;
Default js_fetch_timeout 60s;
Context http, server, location

Defines a timeout for reading and writing for Fetch API. The timeout is set only between two successive
read/write operations, not for the whole response. If no data is transmitted within this time, the
connection is closed.

js_fetch_trusted_certificate

Syntax js_fetch_trusted_certificate file;
Default —
Context http, server, location

Specifies a file with trusted CA certificates in the PEM format used to verify the HTTPS certificate with
Fetch API.

js_fetch_verify

Syntax js_fetch_verify on | off;
Default js_fetch_verify on;
Context http, server, location

Enables or disables verification of the HTTPS server certificate with Fetch API.

js_fetch_verify_depth

Syntax js_fetch_verify_depth number ;
Default js_fetch_verify_depth 100;
Context http, server, location

Sets the verification depth in the HTTPS server certificates chain with Fetch API.

3.2. References and Indexes 121

https://nginx.org/en/docs/njs/reference.html#ngx_fetch
https://nginx.org/en/docs/njs/reference.html#ngx_fetch
https://nginx.org/en/docs/njs/reference.html#ngx_fetch
https://nginx.org/en/docs/njs/reference.html#ngx_fetch
https://nginx.org/en/docs/njs/reference.html#ngx_fetch
https://nginx.org/en/docs/njs/reference.html#ngx_fetch

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

js_header_filter

Syntax js_header_filter function | module.function;
Default —
Context location, if in location, limit_except

Sets an njs function as a response header filter. The directive allows changing arbitrary header fields of
a response header.

ò Note

As the js_header_filter handler returns its result immediately, it supports only synchronous opera-
tions. Thus, asynchronous operations such as r.subrequest() or setTimeout() are not supported.

js_import

Syntax js_import module.js | export_name from module.js;
Default —
Context http, server, location

Imports a module that implements location and variable handlers in njs. The export_name is used as
a namespace to access module functions. If the export_name is not specified, the module name will be
used as a namespace.

js_import http.js;

Here, the module name http is used as a namespace while accessing exports. If the imported module
exports foo(), http.foo is used to refer to it.

Several js_import directives can be specified.

js_path

Syntax js_path path;
Default —
Context http, server, location

Sets an additional path for njs modules.

js_preload_object

Syntax js_preload_object name.json | name from file.json;
Default —
Context http, server, location

Preloads an immutable object at configure time. The name is used as a name of the global variable
though which the object is available in njs code. If the name is not specified, the file name will be used
instead.

js_preload_object map.json;

3.2. References and Indexes 122

https://nginx.org/en/docs/njs/reference.html#r_subrequest
https://nginx.org/en/docs/njs/reference.html#settimeout

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Here, the map is used as a name while accessing the preloaded object.

Several js_preload_object directives can be specified.

js_set

Syntax js_set $variable function | module.function;
Default —
Context http, server, locatio

Sets an njs function for the specified variable. Module functions can be referenced.

The function is called when the variable is referenced for the first time for a given request. The exact
moment depends on a phase at which the variable is referenced. This can be used to perform some
logic not related to variable evaluation. For example, if the variable is referenced only in the log_format
directive, its handler will not be executed until the log phase. This handler can be used to do some
cleanup right before the request is freed.

ò Note

As the js_set handler returns its result immediately, it supports only synchronous callbacks. Thus,
asynchronous callbacks such as r.subrequest() or setTimeout() are not supported.

js_shared_dict_zone

Syntax js_shared_dict_zone zone=name:size [timeout=time] [type=string | number]
[evict];

Default —
Context http

Sets the name and size of the shared memory zone that keeps the key-value dictionary shared between
worker processes.

type optional parameter, allows redefining the value type to number; by default, the
shared dictionary uses string for keys and values

timeout optional parameter, sets the time after which all shared dictionary entries are
removed from the zone

evict optional parameter, removes the oldest key-value pair when the zone storage is
exhausted

Examples:

example.conf:
Creates a dictionary with 1MB size for string values,
key-value pairs are removed after 60 seconds of inactivity:
js_shared_dict_zone zone=foo:1M timeout=60s;

Creates a dictionary with 512KB size for string values,
oldest key-value pair is removed when the zone overflows:
js_shared_dict_zone zone=bar:512K timeout=30s evict;

Creates a persistent dictionary with 32KB size for numeric values:
js_shared_dict_zone zone=num:32k type=number;

3.2. References and Indexes 123

https://nginx.org/en/docs/njs/reference.html#r_subrequest
https://nginx.org/en/docs/njs/reference.html#settimeout

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

example.js:
function get(r) {

r.return(200, ngx.shared.foo.get(r.args.key));
}

function set(r) {
r.return(200, ngx.shared.foo.set(r.args.key, r.args.value));

}

function delete(r) {
r.return(200, ngx.shared.bar.delete(r.args.key));

}

function increment(r) {
r.return(200, ngx.shared.num.incr(r.args.key, 2));

}

js_var

Syntax js_var $variable [value];
Default —
Context http, server, location

Declares a writable variable. The value can contain text, variables, and their combination. The variable
is not overwritten after a redirect, unlike variables created with the set directive.

Request Argument

Each HTTP njs handler receives one argument, a request object.

Limit Conn

The module is used to limit the number of connections per the defined key, in particular, the number of
connections from a single IP address.

Not all connections are counted. A connection is counted only if it has a request being processed by the
server and the whole request header has already been read.

Configuration Example

http {
limit_conn_zone $binary_remote_addr zone=addr:10m;

...

server {

...

location /download/ {
limit_conn addr 1;

}

3.2. References and Indexes 124

https://nginx.org/en/docs/njs/reference.html#r_variables
http://nginx.org/en/docs/http/ngx_http_rewrite_module.html#set
https://nginx.org/en/docs/njs/reference.html#http

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Directives

limit_conn

Syntax limit_conn zone number ;
Default —
Context http, server, location

Sets the shared memory zone and the maximum allowed number of connections for a given key value.
When this limit is exceeded, the server will return the error in reply to a request. For example, the
directives

limit_conn_zone $binary_remote_addr zone=addr:10m;

server {
location /download/ {

limit_conn addr 1;
}

allow only one connection per IP address at a time.

ò Note

In HTTP/2 and HTTP/3, each concurrent request is considered a separate connection.

There could be several limit_conn directives. For example, the following configuration will limit the
number of connections to the server per client IP and, at the same time, the total number of connections
to the virtual server:

limit_conn_zone $binary_remote_addr zone=perip:10m;
limit_conn_zone $server_name zone=perserver:10m;

server {
...
limit_conn perip 10;
limit_conn perserver 100;

}

These directives are inherited from the previous configuration level if and only if there are no limit_conn
directives defined on the current level.

limit_conn_dry_run

Syntax limit_conn_dry_run on | off;
Default limit_conn_dry_run off;
Context http, server, location

Enables the dry run mode. In this mode, the number of connections is not limited, however, in the
shared memory zone, the number of excessive connections is accounted as usual.

3.2. References and Indexes 125

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

limit_conn_log_level

Syntax limit_conn_log_level info | notice | warn | error;
Default limit_conn_log_level error;
Context http, server, location

Sets the desired logging level for cases when the server limits the number of connections.

limit_conn_status

Syntax limit_conn_status code;
Default limit_conn_status 503;
Context http, server, location

Sets the status code to return in response to rejected requests.

limit_conn_zone

Syntax limit_conn_zone key zone = name:size;
Default —
Context http

Sets parameters for a shared memory zone that will keep states for various keys. In particular, the state
includes the current number of connections. The key can contain text, variables, and their combination.
Requests with an empty key value are not accounted.

Usage example:

limit_conn_zone $binary_remote_addr zone=addr:10m;

Here, a client IP address serves as a key. Note that instead of $remote_addr, the $binary_remote_addr
variable is used here.

The $remote_addr variable's size can vary from 7 to 15 bytes. The stored state occupies either 32 or 64
bytes of memory on 32-bit platforms and always 64 bytes on 64-bit platforms.

The $binary_remote_addr variable's size is always 4 bytes for IPv4 addresses or 16 bytes for IPv6
addresses. The stored state always occupies 32 or 64 bytes on 32-bit platforms and 64 bytes on 64-bit
platforms.

One megabyte zone can keep about 32 thousand 32-byte states or about 16 thousand 64-byte states. If
the zone storage is exhausted, the server will return the error to all further requests.

Built-in Variables

$limit_conn_status

keeps the result of limiting the number of connections: PASSED, REJECTED, or REJECTED_DRY_RUN

Limit Req

The module is used to limit the request processing rate per a defined key, in particular, the processing
rate of requests coming from a single IP address. The limitation is done using the "leaky bucket" method.

3.2. References and Indexes 126

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Configuration Example

http {
limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;

...

server {

...

location /search/ {
limit_req zone=one burst=5;

}

Directives

limit_req

Syntax limit_req zone=name [burst=number] [nodelay | delay=number];
Default —
Context http, server, location

Sets the shared memory zone and the maximum burst size of requests. If the requests rate exceeds the
rate configured for a zone, their processing is delayed such that requests are processed at a defined rate.
Excessive requests are delayed until their number exceeds the maximum burst size in which case the
request is terminated with an error . By default, the maximum burst size is equal to zero. For example,
the directives

limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;

server {
location /search/ {

limit_req zone=one burst=5;
}

allow not more than 1 request per second at an average, with bursts not exceeding 5 requests.

If delaying of excessive requests while requests are being limited is not desired, the parameter nodelay
should be used:

limit_req zone=one burst=5 nodelay;

The delay parameter specifies a limit at which excessive requests become delayed. Default value is zero,
i.e. all excessive requests are delayed.

There could be several limit_req directives. For example, the following configuration will limit the
processing rate of requests coming from a single IP address and, at the same time, the request processing
rate by the virtual server:

limit_req_zone $binary_remote_addr zone=perip:10m rate=1r/s;
limit_req_zone $server_name zone=perserver:10m rate=10r/s;

server {
...
limit_req zone=perip burst=5 nodelay;
limit_req zone=perserver burst=10;

}

3.2. References and Indexes 127

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

These directives are inherited from the previous configuration level if and only if there are no limit_req
directives defined on the current level.

limit_req_dry_run

Syntax limit_req_dry_run on | off;
Default limit_req_dry_run off;
Context http, server, location

Enables the dry run mode. In this mode, requests processing rate is not limited, however, in the shared
memory zone, the number of excessive requests is accounted as usual.

limit_req_log_level

Syntax limit_req_log_level info | notice | warn | error;
Default limit_req_log_level error;
Context http, server, location

Sets the desired logging level for cases when the server refuses to process requests due to rate exceeding,
or delays request processing. Logging level for delays is one point less than for refusals; for example, if
limit_req_log_level notice is specified, delays are logged with the info level.

limit_req_status

Syntax limit_req_status code;
Default limit_req_status 503;
Context http, server, location

Sets the status code to return in response to rejected requests.

limit_req_zone

Syntax limit_req_zone key zone=name:size rate=rate;
Default —
Context http

Sets parameters for a shared memory zone that will keep states for various keys. In particular, the
state stores the current number of excessive requests. The key can contain text, variables, and their
combination. Requests with an empty key value are not accounted.

Usage example:

limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;

Here, the states are kept in a 10 megabyte zone one, and an average request processing rate for this zone
cannot exceed 1 request per second.

A client IP address serves as a key. Note that instead of $remote_addr, the $binary_remote_addr
variable is used here.

The $binary_remote_addr variable's size is always 4 bytes for IPv4 addresses or 16 bytes for IPv6
addresses. The stored state always occupies 64 bytes on 32-bit platforms and 128 bytes on 64-bit
platforms.

One megabyte zone can keep about 16 thousand 64-byte states or about 8 thousand 128-byte states.

3.2. References and Indexes 128

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

If the zone storage is exhausted, the least recently used state is removed. If even after that a new state
cannot be created, the request is terminated with an error .

The rate is specified in requests per second (r/s). If a rate of less than one request per second is desired,
it is specified in request per minute (r/m). For example, half-request per second is 30r/m.

Built-in Variables

$limit_req_status

keeps the result of limiting the request processing rate: PASSED, DELAYED, REJECTED, DELAYED_DRY_RUN,
or REJECTED_DRY_RUN

Log

The module writes request logs in the specified format.

Requests are logged in the context of a location where processing ends. It may be different from the
original location, if an internal redirect happens during request processing.

Configuration Example

log_format compression '$remote_addr - $remote_user [$time_local] '
'"$request" $status $bytes_sent '
'"$http_referer" "$http_user_agent" "$gzip_ratio"';

access_log /spool/logs/angie-access.log compression buffer=32k;

Directives

access_log

Syntax access_log path [format [buffer=size] [gzip=level]] [flush=time] [if=condition]];
access_log off;

Default access_log logs/access.log combined; (the path depends on the
--http-log-path build option)

Context http, server, location, if in location, limit_except

Sets the path, format, and configuration for a buffered log write. Several logs can be specified on the
same configuration level. Logging to syslog can be configured by specifying the "syslog:" prefix in the
first parameter. The special value off cancels all access_log directives on the current level. If the
format is not specified then the predefined "combined" format is used.

If either the buffer or gzip parameter is used, writes to log will be buffered.

³ Caution

The buffer size must not exceed the size of an atomic write to a disk file. For FreeBSD this size is
unlimited.

When buffering is enabled, the data will be written to the file:

• if the next log line does not fit into the buffer;

• if the buffered data is older than specified by the flush parameter;

• when a worker process is re-opening log files or is shutting down.

3.2. References and Indexes 129

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

If the gzip parameter is used, then the buffered data will be compressed before writing to the file. The
compression level can be set between 1 (fastest, less compression) and 9 (slowest, best compression). By
default, the buffer size is equal to 64K bytes, and the compression level is set to 1. Since the data is
compressed in atomic blocks, the log file can be decompressed or read by zcat at any time.

Example:

access_log /path/to/log.gz combined gzip flush=5m;

s Important

For gzip compression to work, Angie must be built with the zlib library.

The file path can contain variables, but such logs have some constraints:

• the user whose credentials are used by worker processes should have permissions to create files in
a directory with such logs;

• buffered writes do not work;

• the file is opened and closed for each log write. However, since the descriptors of frequently used
files can be stored in a cache, writing to the old file can continue during the time specified by the
open_log_file_cache directive's valid parameter

• during each log write the existence of the request's root directory is checked, and if it does not
exist the log is not created. It is thus a good idea to specify both root and access_log on the same
configuration level:

server {
root /spool/vhost/data/$host;
access_log /spool/vhost/logs/$host;
...

The if parameter enables conditional logging. A request will not be logged if the condition evaluates
to "0" or an empty string. In the following example, the requests with response codes 2xx and 3xx will
not be logged:

map $status $loggable {
~^[23] 0;
default 1;

}

access_log /path/to/access.log combined if=$loggable;

log_format

Syntax log_format name [escape=default | json | none] string ...;
Default log_format combined "...";
Context http

Specifies log format.

The escape parameter allows setting json or default characters escaping in variables, by default,
default escaping is used. The none value disables escaping.

For default escaping, characters """, "\", and other characters with values less than 32 or above 126
are escaped as "\xXX". If the variable value is not found, a hyphen "-" will be logged.

3.2. References and Indexes 130

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

For json escaping, all characters not allowed in JSON strings will be escaped: characters """ and "\"
are escaped as "\"" and "\\", characters with values less than 32 are escaped as "\n", "\r", "\t", "\b",
"\f", or "\u00XX".

Header lines sent to a client have the prefix sent_http_, for example, $sent_http_content_range.

The configuration always includes the predefined combined format:

log_format combined '$remote_addr - $remote_user [$time_local] '
'"$request" $status $body_bytes_sent '
'"$http_referer" "$http_user_agent"';

open_log_file_cache

Syntax open_log_file_cache max=N [inactive=time] [min_uses=N] [valid=time];
open_log_file_cache off;

Default open_log_file_cache off;
Context http, server, location

Defines a cache that stores the file descriptors of frequently used logs whose names contain variables.
The directive has the following parameters:

max sets the maximum number of descriptors in a cache; if the cache becomes full the
least recently used (LRU) descriptors are closed

inactive sets the time after which the cached descriptor is closed if there were no access
during this time; by default, 10 seconds

min_uses sets the minimum number of file uses during the time defined by the inactive
parameter to let the descriptor stay open in a cache; by default, 1

valid sets the time after which it should be checked that the file still exists with the
same name; by default, 60 seconds

off disables caching

Usage example:

open_log_file_cache max=1000 inactive=20s valid=1m min_uses=2;

Map

Creates variables whose values depend on values of other variables.

Configuration Example

map $http_host $name {
hostnames;

default 0;

example.com 1;
*.example.com 1;
example.org 2;
*.example.org 2;
.example.net 3;
wap.* 4;

}

map $http_user_agent $mobile {

3.2. References and Indexes 131

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

default 0;
"~Opera Mini" 1;

}

Directives

map

Syntax map string $variable { ... }
Default —
Context http

Creates a new variable. Its value depends on the first parameter, specified as a string with variables, for
example:

set $var1 "foo";
set $var2 "bar";

map $var1$var2 $new_variable {
default "foobar_value";

}

Here, the variable $new_variable will have a value composed of the two variables $var1 and $var2, or
a default value if these variables are not defined.

ò Note

Since variables are evaluated only when they are used, the mere declaration even of a large number
of "map" variables does not add any extra costs to request processing.

Parameters inside the map block specify a mapping between source and resulting values.

Source values are specified as strings or regular expressions.

Strings are matched ignoring the case.

A regular expression should either start with a ~ symbol for a case-sensitive matching, or with the ~*
symbols for case-insensitive matching. A regular expression can contain named and positional captures
that can later be used in other directives along with the resulting variable.

If a source value matches one of the names of special parameters described below, it should be prefixed
with the \ symbol.

The resulting value can contain text, variable and their combination.

The following special parameters are also supported:

default value sets the resulting value if the source value matches none of the specified
variants. When default is not specified, the default resulting value will be
an empty string.

hostnames indicates that source values can be hostnames with a prefix or suffix mask.
This parameter should be specified before the list of values.

For example,

*.example.com 1;
example.* 1;

3.2. References and Indexes 132

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

The following two records

example.com 1;
*.example.com 1;

can be combined:

.example.com 1;

include file includes a file with values. There can be several inclusions.
volatile indicates that the variable is not cacheable.

If the source value matches more than one of the specified variants, e.g. both a mask and a regular
expression match, the first matching variant will be chosen, in the following order of priority:

1. String value without a mask

2. Longest string value with a prefix mask, e.g. *.example.com

3. Longest string value with a suffix mask, e.g. mail.*

4. First matching regular expression (in order of appearance in a configuration file)

5. Default value (default)

map_hash_bucket_size

Syntax map_hash_bucket_size size;
Default map_hash_bucket_size 32|64|128;
Context http

Sets the bucket size for the map variables hash tables. Default value depends on the processor's cache
line size. The details of setting up hash tables are provided separately .

map_hash_max_size

Syntax map_hash_max_size size;
Default map_hash_max_size 2048;
Context http

Sets the maximum size of the map variables hash tables. The details of setting up hash tables are
provided separately .

Memcached

The module is used to obtain responses from a memcached server. The key is set in the $memcached_key
variable. A response should be put in memcached in advance by means external to Angie.

Configuration Example

server {
location / {

set $memcached_key "$uri?$args";
memcached_pass host:11211;
error_page 404 502 504 = @fallback;

}

3.2. References and Indexes 133

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

location @fallback {
proxy_pass http://backend;

}
}

Directives

memcached_bind

Syntax memcached_bind address [transparent] | off;
Default —
Context http, server, location

Makes outgoing connections to a memcached server originate from the specified local IP address with
an optional port. Parameter value can contain variables. The special value off cancels the effect of the
memcached_bind directive inherited from the previous configuration level, which allows the system to
auto-assign the local IP address and port.

The transparent parameter allows outgoing connections to a memcached server originate from a non-
local IP address, for example, from a real IP address of a client:

memcached_bind $remote_addr transparent;

In order for this parameter to work, it is usually necessary to run Angie worker processes with the
superuser privileges. On Linux it is not required as if the transparent parameter is specified, worker
processes inherit the CAP_NET_RAW capability from the master process.

s Important

It is necessary to configure kernel routing table to intercept network traffic from the memcached
server.

memcached_buffer_size

Syntax memcached_buffer_size size;
Default memcached_buffer_size 4k|8k;
Context http, server, location

Sets the size of the buffer used for reading the first part of the response received from the memcached
server. The response is passed to the client synchronously, as soon as it is received.

memcached_connect_timeout

Syntax memcached_connect_timeout time;
Default memcached_connect_timeout 60s;
Context http, server, location

Defines a timeout for establishing a connection with a memcached server. It should be noted that this
timeout cannot usually exceed 75 seconds.

3.2. References and Indexes 134

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

memcached_gzip_flag

Syntax memcached_gzip_flag flag ;
Default —
Context http, server, location

Enables the test for the flag presence in the memcached server response and sets the "Content-Encoding"
response header field to "gzip" if the flag is set.

memcached_next_upstream

Syntax memcached_next_upstream error | timeout | invalid_response | not_found | off
...;

Default memcached_next_upstream error timeout;
Context http, server, location

Specifies in which cases a request should be passed to the next server in the upstream pool :

error an error occurred while establishing a connection with the server, passing a re-
quest to it, or reading the response header;

timeout a timeout has occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

invalid_response a server returned an empty or invalid response;
not_found a response was not found on the server;
off disables passing a request to the next server.

ò Note

One should bear in mind that passing a request to the next server is only possible if nothing has
been sent to a client yet. That is, if an error or timeout occurs in the middle of the transferring of a
response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt of communication with a server.

error, timeout,
invalid_response

always considered unsuccessful attempts, even if they are not specified in the
directive

not_found never considered unsuccessful attempts

Passing a request to the next server can be limited by the number of tries and by time.

memcached_next_upstream_timeout

Syntax memcached_next_upstream_timeout time;
Default memcached_next_upstream_timeout 0;
Context http, server, location

Limits the time during which a request can be passed to the next server.

0 turns off this limitation

3.2. References and Indexes 135

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

memcached_next_upstream_tries

Syntax memcached_next_upstream_tries number ;
Default memcached_next_upstream_tries 0;
Context http, server, location

Limits the number of possible tries for passing a request to the next server.

0 turns off this limitation

memcached_pass

Syntax memcached_pass address;
Default —
Context location, if in location

Sets the memcached server address. The address can be specified as a domain name or IP address, and
a port:

memcached_pass localhost:11211;

or as a UNIX domain socket path:

memcached_pass unix:/tmp/memcached.socket;

If a domain name resolves to several addresses, all of them will be used in a round-robin fashion. In
addition, an address can be specified as a server group.

memcached_read_timeout

Syntax memcached_read_timeout time;
Default memcached_read_timeout 60s;
Context http, server, location

Defines a timeout for reading a response from the memcached server. The timeout is set only between
two successive read operations, not for the transmission of the whole response. If the memcached server
does not transmit anything within this time, the connection is closed.

memcached_send_timeout

Syntax memcached_send_timeout time;
Default memcached_send_timeout 60s;
Context http, server, location

Sets a timeout for transmitting a request to the memcached server. The timeout is set only between two
successive write operations, not for the transmission of the whole request. If the memcached server does
not receive anything within this time, the connection is closed.

3.2. References and Indexes 136

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

memcached_socket_keepalive

Syntax memcached_socket_keepalive on | off;
Default memcached_socket_keepalive off;
Context http, server, location

Configures the "TCP keepalive" behavior for outgoing connections to a memcached server.

"" By default, the operating system's settings are in effect for the socket.
on The SO_KEEPALIVE socket option is turned on for the socket.

Built-in Variables

$memcached_key

Defines a key for obtaining response from a memcached server.

Mirror

The module implements mirroring of an original request by creating background mirror subrequests.
Responses to mirror subrequests are ignored.

Configuration Example

location / {
mirror /mirror;
proxy_pass http://backend;

}

location = /mirror {
internal;
proxy_pass http://test_backend$request_uri;

}

Directives

mirror

Syntax mirror uri | off;
Default mirror off;
Context http, server, location

Sets the URI to which an original request will be mirrored. Several mirrors can be specified on the same
configuration level.

mirror_request_body

Syntax mirror_request_body on | off;
Default mirror_request_body on;
Context http, server, location

Indicates whether the client request body is mirrored. When enabled, the client request body
will be read prior to creating mirror subrequests. In this case, unbuffered client request body

3.2. References and Indexes 137

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxying set by the proxy_request_buffering , fastcgi_request_buffering , scgi_request_buffering and
uwsgi_request_buffering directives will be disabled.

location / {
mirror /mirror;
mirror_request_body off;
proxy_pass http://backend;

}

location = /mirror {
internal;
proxy_pass http://log_backend;
proxy_pass_request_body off;
proxy_set_header Content-Length "";
proxy_set_header X-Original-URI $request_uri;

}

MP4

The module provides pseudo-streaming server-side support for MP4 files. Such files typically have the
.mp4, .m4v, or .m4a filename extensions.

Pseudo-streaming works in alliance with a compatible media player. The player sends an HTTP request
to the server with the start time specified in the query string argument (named simply start and specified
in seconds), and the server responds with the stream such that its start position corresponds to the
requested time, for example:

http://example.com/elephants_dream.mp4?start=238.88

This allows performing a random seeking at any time, or starting playback in the middle of the timeline.

To support seeking, H.264-based formats store metadata in a so-called "moov atom". It is a part of the
file that holds the index information for the whole file.

To start playback, the player first needs to read metadata. This is done by sending a special request
with the start=0 argument. A lot of encoding software insert the metadata at the end of the file. This
is suboptimal for pseudo-streaming, because the player has to download the entire file before starting
playback. If the metadata are located at the beginning of the file, it is enough for Angie to simply
start sending back the file contents. If the metadata are located at the end of the file, Angie must
read the entire file and prepare a new stream so that the metadata come before the media data. This
involves some CPU, memory, and disk I/O overhead, so it is a good idea to prepare an original file for
pseudo-streaming in advance, rather than having Angie do this on every such request.

The module also supports the end argument of an HTTP request which sets the end point of playback.
The end argument can be specified with the start argument or separately:

http://example.com/elephants_dream.mp4?start=238.88&end=555.55

For a matching request with a non-zero start or end argument, Angie will read the metadata from the
file, prepare the stream with the requested time range, and send it to the client. This has the same
overhead as described above.

If the start argument points to a non-key video frame, the beginning of such video will be broken. To fix
this issue, the video can be prepended with the key frame before start point and with all intermediate
frames between them. These frames will be hidden from playback using an edit list.

If a matching request does not include the start and end arguments, there is no overhead, and the file is
sent simply as a static resource. Some players also support byte-range requests, and thus do not require
this module.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_mp4_module build option. In packages and images from our repos, the module is included

3.2. References and Indexes 138

https://github.com/flowplayer/flowplayer/wiki/7.1.1-video-file-correction

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

in the build.

³ Caution

If a third-party mp4 module was previously used, it should be disabled.

A similar pseudo-streaming support for FLV files is provided by the FLV module.

Configuration Example

location /video/ {
mp4;
mp4_buffer_size 1m;
mp4_max_buffer_size 5m;

}

Directives

mp4

Syntax mp4;
Default —
Context location

Turns on module processing in a surrounding location.

mp4_buffer_size

Syntax mp4_buffer_size size;
Default mp4_buffer_size 512K;
Context http, server, location

Sets the initial size of the buffer used for processing MP4 files.

mp4_max_buffer_size

Syntax mp4_max_buffer_size size;
Default mp4_max_buffer_size 10M;
Context http, server, location

During metadata processing, a larger buffer may become necessary. Its size cannot exceed the specified
size, or else Angie will return the 500 (Internal Server Error) server error, and log the following message:

"/some/movie/file.mp4" mp4 moov atom is too large: 12583268, you may want to increase
mp4_max_buffer_size

mp4_limit_rate

Syntax mp4_limit_rate on | off | factor ;
Default mp4_limit_rate off;
Context http, server, location

3.2. References and Indexes 139

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Rate-limits the transfer of the requested MP4 file to the client. To calculate the limit, the factor is
multiplied by the average bitrate of the file.

• The off value disables rate limiting.

• The on value sets a factor of 1.1.

• The limit is applied after reaching the value set by mp4_limit_rate_after .

The requests are rate limited individually: if the client opens two connections, the resulting rate doubles.
In this regard, consider using limit_conn and accompanying directives.

mp4_limit_rate_after

Syntax mp4_limit_rate_after time;
Default mp4_limit_rate_after 60s;
Context http, server, location

Sets (in terms of playback time) the amount of media data transferred that triggers the rate limit set by
mp4_limit_rate.

mp4_start_key_frame

Syntax mp4_start_key_frame on | off;
Default mp4_start_key_frame off;
Context http, server, location

Forces output video to always start with a key video frame. If the start argument does not point to a
key frame, initial frames are hidden using an mp4 edit list. Edit lists are supported by major players
and browsers such as Chrome, Safari, QuickTime and ffmpeg, partially supported by Firefox.

Perl

The module is used to implement location and variable handlers in Perl and insert Perl calls into SSI.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_perl_module build option.

In our repositories, the module is built dynamically and is available as a separate package named
angie-module-perl or angie-pro-module-perl.

s Important

This module requires Perl version 5.6.1 or higher. The C compiler should be compatible with the one
used to build Perl.

Known Issues

The module is experimental, caveat emptor applies.

In order for Perl to recompile the modified modules during reconfiguration, it should be built with the
-Dusemultiplicity=yes or -Dusethreads=yes parameters. Also, to make Perl leak less memory at run
time, it should be built with the -Dusemymalloc=no parameter. To check the values of these parameters
in an already built Perl (preferred values are specified in the example), run:

$ perl -V:usemultiplicity -V:usemymalloc
usemultiplicity='define';
usemymalloc='n';

3.2. References and Indexes 140

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Note that after rebuilding Perl with the new -Dusemultiplicity=yes or -Dusethreads=yes parameters,
all binary Perl modules will have to be rebuilt as well — they will just stop working with the new Perl.

There is a possibility that the main process and then worker processes will grow in size after every
reconfiguration. If the main process grows to an unacceptable size, the live upgrade procedure can be
applied without changing the executable file.

While the Perl module is performing a long-running operation, such as resolving a domain name, con-
necting to another server, or querying a database, other requests assigned to the current worker process
will not be processed. It is thus recommended to perform only such operations that have predictable
and short execution time, such as accessing the local file system.

Configuration Example

http {

perl_modules perl/lib;
perl_require hello.pm;

perl_set $msie6 '

sub {
my $r = shift;
my $ua = $r->header_in("User-Agent");

return "" if $ua =~ /Opera/;
return "1" if $ua =~ / MSIE [6-9]\.\d+/;
return "";

}

';

server {
location / {

perl hello::handler;
}

}

The perl/lib/hello.pm module:

package hello;

use nginx;

sub handler {
my $r = shift;

$r->send_http_header("text/html");
return OK if $r->header_only;

$r->print("hello!\n
");

if (-f $r->filename or -d _) {
$r->print($r->uri, " exists!\n");

}

return OK;
}

3.2. References and Indexes 141

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

1;
__END__

Directives

perl

Syntax perl module :: function | 'sub { ... }';
Default —
Context location, limit_except

Sets a Perl handler for the given location.

perl_modules

Syntax perl_modules path;
Default —
Context http

Sets an additional path for Perl modules.

perl_require

Syntax perl_require module;
Default —
Context http

Defines the name of a module that will be loaded during each reconfiguration. Several perl_require
directives can be present.

perl_set

Syntax perl_set $variable module :: function | 'sub { ... }';
Default —
Context http

Installs a Perl handler for the specified variable.

Calling Perl from SSI

An SSI command calling Perl has the following format:

<!--# perl sub="module::function" arg="parameter1" arg="parameter2" ...
-->

The $r Request Object Methods

$r->args

Returns request arguments.

3.2. References and Indexes 142

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$r->filename

Returns a filename corresponding to the request URI.

$r->has_request_body (handler)

Returns 0 if there is no body in a request. If there is a body, the specified handler is set for the request
and 1 is returned. After reading the request body, Angie will call the specified handler. Note that the
handler function should be passed by reference. Example:

package hello;

use nginx;

sub handler {
my $r = shift;

if ($r->request_method ne "POST") {
return DECLINED;

}

if ($r->has_request_body(\&post)) {
return OK;

}

return HTTP_BAD_REQUEST;
}

sub post {
my $r = shift;

$r->send_http_header;

$r->print("request_body: \"", $r->request_body, "\"
");
$r->print("request_body_file: \"", $r->request_body_file, "\"
\n");

return OK;
}

1;

__END__

$r->allow_ranges

Enables the use of byte ranges when sending responses.

$r->discard_request_body

Instructs Angie to discard the request body.

$r->header_in (field)

Returns the value of the specified client request header field.

3.2. References and Indexes 143

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$r->header_only

Determines whether the whole response or only its header should be sent to the client.

$r->header_out (field, value)

Sets a value for the specified response header field.

$r->internal_redirect (uri)

Does an internal redirect to the specified uri. An actual redirect happens after the Perl handler execution
is completed. The method accepts escaped URIs and supports redirections to named locations.

$r->log_error (errno, message)

Writes the specified message into the error_log . If errno is non-zero, an error code and its description
will be appended to the message.

$r->print (text, ...)

Passes data to a client.

$r->request_body

Returns the client request body if it has not been written to a temporary file. To ensure that the client
request body is in memory, its size should be limited by client_max_body_size, and a sufficient buffer
size should be set using client_body_buffer_size.

$r->request_body_file

Returns the name of the file with the client request body. After the processing, the file should be removed.
To always write a request body to a file, client_body_in_file_only should be enabled.

$r->request_method

Returns the client request HTTP method.

$r->remote_addr

Returns the client IP address.

$r->flush

Immediately sends data to the client.

$r->sendfile (name [, offset [, length]])

Sends the specified file content to the client. Optional parameters specify the initial offset and length of
the data to be transmitted. The actual data transmission happens after the Perl handler has completed.

$r->send_http_header ([type])

Sends the response header to the client. The optional type parameter sets the value of the "Content-
Type" response header field. If the value is an empty string, the "Content-Type" header field will not
be sent.

3.2. References and Indexes 144

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$r->status (code)

Sets a response code.

$r->sleep (milliseconds, handler)

Sets the specified handler and stops request processing for the specified time. In the meantime, Angie
continues to process other requests. After the specified time has elapsed, Angie will call the installed
handler. Note that the handler function should be passed by reference. In order to pass data between
handlers, $r->variable() should be used. Example:

package hello;

use nginx;

sub handler {
my $r = shift;

$r->discard_request_body;
$r->variable("var", "OK");
$r->sleep(1000, \&next);

return OK;
}

sub next {
my $r = shift;

$r->send_http_header;
$r->print($r->variable("var"));

return OK;
}

1;

__END__

$r->unescape (text)

Decodes a text encoded in the "%XX" form.

$r->uri

Returns a request URI.

$r->variable (name [, value])

Returns or sets the value of the specified variable. Variables are local to each request.

Prometheus

Collects Angie statistics, based on templates defined in the configuration, and returns metrics generated
from these templates in the Prometheus format.

. Attention

3.2. References and Indexes 145

https://prometheus.io/docs/instrumenting/exposition_formats/

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

To collect statistics, enable a shared memory zone in the appropriate contexts using:

• the zone directive in http_upstream or stream_upstream;

• the status_zone directive;

• the status_zone parameter in the resolver directive.

Configuration Example

Three metrics for collecting request statistics for server shared memory zones, combined into the custom
template and published at the /p8s path:

http {

prometheus_template custom {
'angie_http_server_zones_requests_total{zone="$1"}' $p8s_value

path=~^/http/server_zones/([^/]+)/requests/total$
type=counter;

'angie_http_server_zones_requests_processing{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/requests/processing$
type=gauge;

'angie_http_server_zones_requests_discarded{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/requests/discarded$
type=counter;

}

...

server {

listen 80;

location =/p8s {
prometheus custom;

}

...

}
}

Angie includes a helper file prometheus_all.conf that contains a set of commonly used metrics combined
into the all template:

File Contents (Angie)

prometheus_template all {

angie_connections_accepted $p8s_value
path=/connections/accepted
type=counter
'help=The total number of accepted client connections.';

angie_connections_dropped $p8s_value
path=/connections/dropped

3.2. References and Indexes 146

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

type=counter
'help=The total number of dropped client connections.';

angie_connections_active $p8s_value
path=/connections/active
type=gauge
'help=The current number of active client connections.';

angie_connections_idle $p8s_value
path=/connections/idle
type=gauge
'help=The current number of idle client connections.';

'angie_slabs_pages_used{zone="$1"}' $p8s_value
path=~^/slabs/([^/]+)/pages/used$
type=gauge
'help=The number of currently used memory pages in a slab zone.';

'angie_slabs_pages_free{zone="$1"}' $p8s_value
path=~^/slabs/([^/]+)/pages/free$
type=gauge
'help=The number of currently free memory pages in a slab zone.';

'angie_slabs_pages_slots_used{zone="$1",size="$2"}' $p8s_value
path=~^/slabs/([^/]+)/slots/([^/]+)/used$
type=gauge
'help=The number of currently used memory slots of a specific size in a slab zone.

→˓';

'angie_slabs_pages_slots_free{zone="$1",size="$2"}' $p8s_value
path=~^/slabs/([^/]+)/slots/([^/]+)/free$
type=gauge
'help=The number of currently free memory slots of a specific size in a slab zone.

→˓';

'angie_slabs_pages_slots_reqs{zone="$1",size="$2"}' $p8s_value
path=~^/slabs/([^/]+)/slots/([^/]+)/reqs$
type=counter
'help=The total number of attempts to allocate a memory slot of a specific size␣

→˓in a slab zone.';

'angie_slabs_pages_slots_fails{zone="$1",size="$2"}' $p8s_value
path=~^/slabs/([^/]+)/slots/([^/]+)/fails$
type=counter
'help=The number of unsuccessful attempts to allocate a memory slot of a specific␣

→˓size in a slab zone.';

'angie_resolvers_queries{zone="$1",type="$2"}' $p8s_value
path=~^/resolvers/([^/]+)/queries/([^/]+)$
type=counter
'help=The number of queries of a specific type to resolve in a resolver zone.';

'angie_resolvers_sent{zone="$1",type="$2"}' $p8s_value
path=~^/resolvers/([^/]+)/sent/([^/]+)$

3.2. References and Indexes 147

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

type=counter
'help=The number of sent DNS queries of a specific type to resolve in a resolver␣

→˓zone.';

'angie_resolvers_responses{zone="$1",status="$2"}' $p8s_value
path=~^/resolvers/([^/]+)/responses/([^/]+)$
type=counter
'help=The number of resolution results with a specific status in a resolver zone.

→˓';

'angie_http_server_zones_ssl_handshaked{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/ssl/handshaked$
type=counter
'help=The total number of successful SSL handshakes in an HTTP server zone.';

'angie_http_server_zones_ssl_reuses{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/ssl/reuses$
type=counter
'help=The total number of session reuses during SSL handshakes in an HTTP server␣

→˓zone.';

'angie_http_server_zones_ssl_timedout{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/ssl/timedout$
type=counter
'help=The total number of timed-out SSL handshakes in an HTTP server zone.';

'angie_http_server_zones_ssl_failed{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/ssl/failed$
type=counter
'help=The total number of failed SSL handshakes in an HTTP server zone.';

'angie_http_server_zones_requests_total{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/requests/total$
type=counter
'help=The total number of client requests received in an HTTP server zone.';

'angie_http_server_zones_requests_processing{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/requests/processing$
type=gauge
'help=The number of client requests currently being processed in an HTTP server␣

→˓zone.';

'angie_http_server_zones_requests_discarded{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/requests/discarded$
type=counter
'help=The total number of client requests completed in an HTTP server zone␣

→˓without sending a response.';

'angie_http_server_zones_responses{zone="$1",code="$2"}' $p8s_value
path=~^/http/server_zones/([^/]+)/responses/([^/]+)$
type=counter
'help=The number of responses with a specific status in an HTTP server zone.';

3.2. References and Indexes 148

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

'angie_http_server_zones_data_received{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/data/received$
type=counter
'help=The total number of bytes received from clients in an HTTP server zone.';

'angie_http_server_zones_data_sent{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/data/sent$
type=counter
'help=The total number of bytes sent to clients in an HTTP server zone.';

'angie_http_location_zones_requests_total{zone="$1"}' $p8s_value
path=~^/http/location_zones/([^/]+)/requests/total$
type=counter
'help=The total number of client requests in an HTTP location zone.';

'angie_http_location_zones_requests_discarded{zone="$1"}' $p8s_value
path=~^/http/location_zones/([^/]+)/requests/discarded$
type=counter
'help=The total number of client requests completed in an HTTP location zone␣

→˓without sending a response.';

'angie_http_location_zones_responses{zone="$1",code="$2"}' $p8s_value
path=~^/http/location_zones/([^/]+)/responses/([^/]+)$
type=counter
'help=The number of responses with a specific status in an HTTP location zone.';

'angie_http_location_zones_data_received{zone="$1"}' $p8s_value
path=~^/http/location_zones/([^/]+)/data/received$
type=counter
'help=The total number of bytes received from clients in an HTTP location zone.';

'angie_http_location_zones_data_sent{zone="$1"}' $p8s_value
path=~^/http/location_zones/([^/]+)/data/sent$
type=counter
'help=The total number of bytes sent to clients in an HTTP location zone.';

'angie_http_upstreams_peers_state{upstream="$1",peer="$2"}' $p8st_all_ups_state
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/state$
type=gauge
'help=The current state of an upstream peer in "HTTP": 1 - up, 2 - down, 3 -␣

→˓unavailable, or 4 - recovering.';

'angie_http_upstreams_peers_selected_current{upstream="$1",peer="$2"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/selected/current$
type=gauge
'help=The number of requests currently being processed by an upstream peer in

→˓"HTTP".';

'angie_http_upstreams_peers_selected_total{upstream="$1",peer="$2"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/selected/total$
type=counter
'help=The total number of attempts to use an upstream peer in "HTTP".';

3.2. References and Indexes 149

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

'angie_http_upstreams_peers_responses{upstream="$1",peer="$2",code="$3"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/responses/([^/]+)$
type=counter
'help=The number of responses with a specific status received from an upstream␣

→˓peer in "HTTP".';

'angie_http_upstreams_peers_data_sent{upstream="$1",peer="$2"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/data/sent$
type=counter
'help=The total number of bytes sent to an upstream peer in "HTTP".';

'angie_http_upstreams_peers_data_received{upstream="$1",peer="$2"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/data/received$
type=counter
'help=The total number of bytes received from an upstream peer in "HTTP".';

'angie_http_upstreams_peers_health_fails{upstream="$1",peer="$2"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/health/fails$
type=counter
'help=The total number of unsuccessful attempts to communicate with an upstream␣

→˓peer in "HTTP".';

'angie_http_upstreams_peers_health_unavailable{upstream="$1",peer="$2"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/health/unavailable$
type=counter
'help=The number of times when an upstream peer in "HTTP" became "unavailable"␣

→˓due to reaching the max_fails limit.';

'angie_http_upstreams_peers_health_downtime{upstream="$1",peer="$2"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/health/downtime$
type=counter
'help=The total time (in milliseconds) that an upstream peer in "HTTP" was

→˓"unavailable".';

'angie_http_upstreams_keepalive{upstream="$1"}' $p8s_value
path=~^/http/upstreams/([^/]+)/keepalive$
type=gauge
'help=The number of currently cached keepalive connections for an HTTP upstream.';

'angie_http_caches_responses{zone="$1",status="$2"}' $p8s_value
path=~^/http/caches/([^/]+)/([^/]+)/responses$
type=counter
'help=The total number of responses processed in an HTTP cache zone with a␣

→˓specific cache status.';

'angie_http_caches_bytes{zone="$1",status="$2"}' $p8s_value
path=~^/http/caches/([^/]+)/([^/]+)/bytes$
type=counter
'help=The total number of bytes processed in an HTTP cache zone with a specific␣

→˓cache status.';

3.2. References and Indexes 150

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

'angie_http_caches_responses_written{zone="$1",status="$2"}' $p8s_value
path=~^/http/caches/([^/]+)/([^/]+)/responses_written$
type=counter
'help=The total number of responses written to an HTTP cache zone with a specific␣

→˓cache status.';

'angie_http_caches_bytes_written{zone="$1",status="$2"}' $p8s_value
path=~^/http/caches/([^/]+)/([^/]+)/bytes_written$
type=counter
'help=The total number of bytes written to an HTTP cache zone with a specific␣

→˓cache status.';

'angie_http_caches_size{zone="$1"}' $p8s_value
path=~^/http/caches/([^/]+)/size$
type=gauge
'help=The current size (in bytes) of cached responses in an HTTP cache zone.';

'angie_http_caches_shards_size{zone="$1",path="$2"}' $p8s_value
path=~^/http/caches/([^/]+)/shards/([^/]+)/size$
type=gauge
'help=The current size (in bytes) of cached responses in a shard path of an HTTP␣

→˓cache zone.';

'angie_http_limit_conns{zone="$1",status="$2"}' $p8s_value
path=~^/http/limit_conns/([^/]+)/([^/]+)$
type=counter
'help=The number of requests processed by an HTTP limit_conn zone with a specific␣

→˓result.';

'angie_http_limit_reqs{zone="$1",status="$2"}' $p8s_value
path=~^/http/limit_reqs/([^/]+)/([^/]+)$
type=counter
'help=The number of requests processed by an HTTP limit_reqs zone with a specific␣

→˓result.';

'angie_stream_server_zones_ssl_handshaked{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/ssl/handshaked$
type=counter
'help=The total number of successful SSL handshakes in a stream server zone.';

'angie_stream_server_zones_ssl_reuses{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/ssl/reuses$
type=counter
'help=The total number of session reuses during SSL handshakes in a stream server␣

→˓zone.';

'angie_stream_server_zones_ssl_timedout{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/ssl/timedout$
type=counter
'help=The total number of timed-out SSL handshakes in a stream server zone.';

'angie_stream_server_zones_ssl_failed{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/ssl/failed$

3.2. References and Indexes 151

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

type=counter
'help=The total number of failed SSL handshakes in a stream server zone.';

'angie_stream_server_zones_connections_total{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/connections/total$
type=counter
'help=The total number of client connections received in a stream server zone.';

'angie_stream_server_zones_connections_processing{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/connections/processing$
type=gauge
'help=The number of client connections currently being processed in a stream␣

→˓server zone.';

'angie_stream_server_zones_connections_discarded{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/connections/discarded$
type=counter
'help=The total number of client connections completed in a stream server zone␣

→˓without establishing a session.';

'angie_stream_server_zones_connections_passed{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/connections/passed$
type=counter
'help=The total number of client connections in a stream server zone passed for␣

→˓handling to a different listening socket.';

'angie_stream_server_zones_sessions{zone="$1",status="$2"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/sessions/([^/]+)$
type=counter
'help=The number of sessions finished with a specific status in a stream server␣

→˓zone.';

'angie_stream_server_zones_data_received{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/data/received$
type=counter
'help=The total number of bytes received from clients in a stream server zone.';

'angie_stream_server_zones_data_sent{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/data/sent$
type=counter
'help=The total number of bytes sent to clients in a stream server zone.';

'angie_stream_upstreams_peers_state{upstream="$1",peer="$2"}' $p8st_all_ups_state
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/state$
type=gauge
'help=The current state of an upstream peer in "stream": 1 - up, 2 - down, 3 -␣

→˓unavailable, or 4 - recovering.';

'angie_stream_upstreams_peers_selected_current{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/selected/current$
type=gauge
'help=The number of sessions currently being processed by an upstream peer in

3.2. References and Indexes 152

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

→˓"stream".';

'angie_stream_upstreams_peers_selected_total{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/selected/total$
type=counter
'help=The total number of attempts to use an upstream peer in "stream".';

'angie_stream_upstreams_peers_data_sent{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/data/sent$
type=counter
'help=The total number of bytes sent to an upstream peer in "stream".';

'angie_stream_upstreams_peers_data_received{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/data/received$
type=counter
'help=The total number of bytes received from an upstream peer in "stream".';

'angie_stream_upstreams_peers_health_fails{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/health/fails$
type=counter
'help=The total number of unsuccessful attempts to communicate with an upstream␣

→˓peer in "stream".';

'angie_stream_upstreams_peers_health_unavailable{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/health/unavailable$
type=counter
'help=The number of times when an upstream peer in "stream" became "unavailable"␣

→˓due to reaching the max_fails limit.';

'angie_stream_upstreams_peers_health_downtime{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/health/downtime$
type=counter
'help=The total time (in milliseconds) that an upstream peer in "stream" was

→˓"unavailable".';
}

map $p8s_value $p8st_all_ups_state {
volatile;
"up" 1;
"down" 2;
"unavailable" 3;
"recovering" 4;

"unhealthy" 5;
"checking" 6;
"draining" 7;

"busy" 8;
default 0;

}

File Contents (Angie PRO)

prometheus_template all {

angie_connections_accepted $p8s_value
path=/connections/accepted

3.2. References and Indexes 153

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

type=counter
'help=The total number of accepted client connections.';

angie_connections_dropped $p8s_value
path=/connections/dropped
type=counter
'help=The total number of dropped client connections.';

angie_connections_active $p8s_value
path=/connections/active
type=gauge
'help=The current number of active client connections.';

angie_connections_idle $p8s_value
path=/connections/idle
type=gauge
'help=The current number of idle client connections.';

'angie_slabs_pages_used{zone="$1"}' $p8s_value
path=~^/slabs/([^/]+)/pages/used$
type=gauge
'help=The number of currently used memory pages in a slab zone.';

'angie_slabs_pages_free{zone="$1"}' $p8s_value
path=~^/slabs/([^/]+)/pages/free$
type=gauge
'help=The number of currently free memory pages in a slab zone.';

'angie_slabs_pages_slots_used{zone="$1",size="$2"}' $p8s_value
path=~^/slabs/([^/]+)/slots/([^/]+)/used$
type=gauge
'help=The number of currently used memory slots of a specific size in a slab zone.

→˓';

'angie_slabs_pages_slots_free{zone="$1",size="$2"}' $p8s_value
path=~^/slabs/([^/]+)/slots/([^/]+)/free$
type=gauge
'help=The number of currently free memory slots of a specific size in a slab zone.

→˓';

'angie_slabs_pages_slots_reqs{zone="$1",size="$2"}' $p8s_value
path=~^/slabs/([^/]+)/slots/([^/]+)/reqs$
type=counter
'help=The total number of attempts to allocate a memory slot of a specific size␣

→˓in a slab zone.';

'angie_slabs_pages_slots_fails{zone="$1",size="$2"}' $p8s_value
path=~^/slabs/([^/]+)/slots/([^/]+)/fails$
type=counter
'help=The number of unsuccessful attempts to allocate a memory slot of a specific␣

→˓size in a slab zone.';

'angie_resolvers_queries{zone="$1",type="$2"}' $p8s_value
path=~^/resolvers/([^/]+)/queries/([^/]+)$

3.2. References and Indexes 154

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

type=counter
'help=The number of queries of a specific type to resolve in a resolver zone.';

'angie_resolvers_sent{zone="$1",type="$2"}' $p8s_value
path=~^/resolvers/([^/]+)/sent/([^/]+)$
type=counter
'help=The number of sent DNS queries of a specific type to resolve in a resolver␣

→˓zone.';

'angie_resolvers_responses{zone="$1",status="$2"}' $p8s_value
path=~^/resolvers/([^/]+)/responses/([^/]+)$
type=counter
'help=The number of resolution results with a specific status in a resolver zone.

→˓';

'angie_http_server_zones_ssl_handshaked{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/ssl/handshaked$
type=counter
'help=The total number of successful SSL handshakes in an HTTP server zone.';

'angie_http_server_zones_ssl_reuses{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/ssl/reuses$
type=counter
'help=The total number of session reuses during SSL handshakes in an HTTP server␣

→˓zone.';

'angie_http_server_zones_ssl_timedout{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/ssl/timedout$
type=counter
'help=The total number of timed-out SSL handshakes in an HTTP server zone.';

'angie_http_server_zones_ssl_failed{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/ssl/failed$
type=counter
'help=The total number of failed SSL handshakes in an HTTP server zone.';

'angie_http_server_zones_requests_total{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/requests/total$
type=counter
'help=The total number of client requests received in an HTTP server zone.';

'angie_http_server_zones_requests_processing{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/requests/processing$
type=gauge
'help=The number of client requests currently being processed in an HTTP server␣

→˓zone.';

'angie_http_server_zones_requests_discarded{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/requests/discarded$
type=counter
'help=The total number of client requests completed in an HTTP server zone␣

→˓without sending a response.';

'angie_http_server_zones_responses{zone="$1",code="$2"}' $p8s_value

3.2. References and Indexes 155

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

path=~^/http/server_zones/([^/]+)/responses/([^/]+)$
type=counter
'help=The number of responses with a specific status in an HTTP server zone.';

'angie_http_server_zones_data_received{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/data/received$
type=counter
'help=The total number of bytes received from clients in an HTTP server zone.';

'angie_http_server_zones_data_sent{zone="$1"}' $p8s_value
path=~^/http/server_zones/([^/]+)/data/sent$
type=counter
'help=The total number of bytes sent to clients in an HTTP server zone.';

'angie_http_location_zones_requests_total{zone="$1"}' $p8s_value
path=~^/http/location_zones/([^/]+)/requests/total$
type=counter
'help=The total number of client requests in an HTTP location zone.';

'angie_http_location_zones_requests_discarded{zone="$1"}' $p8s_value
path=~^/http/location_zones/([^/]+)/requests/discarded$
type=counter
'help=The total number of client requests completed in an HTTP location zone␣

→˓without sending a response.';

'angie_http_location_zones_responses{zone="$1",code="$2"}' $p8s_value
path=~^/http/location_zones/([^/]+)/responses/([^/]+)$
type=counter
'help=The number of responses with a specific status in an HTTP location zone.';

'angie_http_location_zones_data_received{zone="$1"}' $p8s_value
path=~^/http/location_zones/([^/]+)/data/received$
type=counter
'help=The total number of bytes received from clients in an HTTP location zone.';

'angie_http_location_zones_data_sent{zone="$1"}' $p8s_value
path=~^/http/location_zones/([^/]+)/data/sent$
type=counter
'help=The total number of bytes sent to clients in an HTTP location zone.';

'angie_http_upstreams_peers_backup{upstream="$1",peer="$2"}' $p8st_all_ups_backup
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/backup$
type=gauge
'help=The HTTP upstream peer backup group level.';

'angie_http_upstreams_peers_state{upstream="$1",peer="$2"}' $p8st_all_ups_state
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/state$
type=gauge
'help=The current state of an upstream peer in "HTTP": 1 - up, 2 - down, 3 -␣

→˓unavailable, 4 - recovering, 5 - unhealthy, 6 - checking, or 7 - draining.';

3.2. References and Indexes 156

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

'angie_http_upstreams_peers_selected_current{upstream="$1",peer="$2"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/selected/current$
type=gauge
'help=The number of requests currently being processed by an upstream peer in

→˓"HTTP".';

'angie_http_upstreams_peers_selected_total{upstream="$1",peer="$2"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/selected/total$
type=counter
'help=The total number of attempts to use an upstream peer in "HTTP".';

'angie_http_upstreams_peers_responses{upstream="$1",peer="$2",code="$3"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/responses/([^/]+)$
type=counter
'help=The number of responses with a specific status received from an upstream␣

→˓peer in "HTTP".';

'angie_http_upstreams_peers_data_sent{upstream="$1",peer="$2"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/data/sent$
type=counter
'help=The total number of bytes sent to an upstream peer in "HTTP".';

'angie_http_upstreams_peers_data_received{upstream="$1",peer="$2"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/data/received$
type=counter
'help=The total number of bytes received from an upstream peer in "HTTP".';

'angie_http_upstreams_peers_health_fails{upstream="$1",peer="$2"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/health/fails$
type=counter
'help=The total number of unsuccessful attempts to communicate with an upstream␣

→˓peer in "HTTP".';

'angie_http_upstreams_peers_health_unavailable{upstream="$1",peer="$2"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/health/unavailable$
type=counter
'help=The number of times when an upstream peer in "HTTP" became "unavailable"␣

→˓due to reaching the max_fails limit.';

'angie_http_upstreams_peers_health_downtime{upstream="$1",peer="$2"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/health/downtime$
type=counter
'help=The total time (in milliseconds) that an upstream peer in "HTTP" was

→˓"unavailable".';

'angie_http_upstreams_peers_health_header_time{upstream="$1",peer="$2"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/health/header_time$
type=gauge
'help=Average time (in milliseconds) to receive the response headers from an␣

→˓upstream peer in "HTTP".';

'angie_http_upstreams_peers_health_response_time{upstream="$1",peer="$2"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/health/response_time$

3.2. References and Indexes 157

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

type=gauge
'help=Average time (in milliseconds) to receive the complete response from an␣

→˓upstream peer in "HTTP".';

'angie_http_upstreams_peers_health_probes_count{upstream="$1",peer="$2"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/health/probes/count$
type=counter
'help=The total number of probes for this peer.';

'angie_http_upstreams_peers_health_probes_fails{upstream="$1",peer="$2"}' $p8s_value
path=~^/http/upstreams/([^/]+)/peers/([^/]+)/health/probes/fails$
type=counter
'help=The total number of failed probes for this peer.';

'angie_http_upstreams_keepalive{upstream="$1"}' $p8s_value
path=~^/http/upstreams/([^/]+)/keepalive$
type=gauge
'help=The number of currently cached keepalive connections for an HTTP upstream.';

'angie_http_upstreams_backup_switch_active{upstream="$1"}' $p8s_value
path=~^/http/upstreams/([^/]+)/backup_switch/active$
type=gauge
'help=The currently active HTTP upstream servers backup group level.';

'angie_http_upstreams_queue_queued{upstream="$1"}' $p8s_value
path=~^/http/upstreams/([^/]+)/queue/queued$
type=counter
'help=The total number of queued requests for an HTTP upstream.';

'angie_http_upstreams_queue_waiting{upstream="$1"}' $p8s_value
path=~^/http/upstreams/([^/]+)/queue/waiting$
type=gauge
'help=The number of requests currently waiting in an HTTP upstream queue.';

'angie_http_upstreams_queue_dropped{upstream="$1"}' $p8s_value
path=~^/http/upstreams/([^/]+)/queue/dropped$
type=counter
'help=The total number of requests dropped from an HTTP upstream queue because␣

→˓the client had prematurely closed the connection.';

'angie_http_upstreams_queue_timedout{upstream="$1"}' $p8s_value
path=~^/http/upstreams/([^/]+)/queue/timedout$
type=counter
'help=The total number of requests timed out from an HTTP upstream queue.';

'angie_http_upstreams_queue_overflows{upstream="$1"}' $p8s_value
path=~^/http/upstreams/([^/]+)/queue/overflows$
type=counter
'help=The total number of requests rejected by an HTTP upstream queue because the␣

→˓size limit had been reached.';

'angie_http_caches_responses{zone="$1",status="$2"}' $p8s_value
path=~^/http/caches/([^/]+)/([^/]+)/responses$

3.2. References and Indexes 158

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

type=counter
'help=The total number of responses processed in an HTTP cache zone with a␣

→˓specific cache status.';

'angie_http_caches_bytes{zone="$1",status="$2"}' $p8s_value
path=~^/http/caches/([^/]+)/([^/]+)/bytes$
type=counter
'help=The total number of bytes processed in an HTTP cache zone with a specific␣

→˓cache status.';

'angie_http_caches_responses_written{zone="$1",status="$2"}' $p8s_value
path=~^/http/caches/([^/]+)/([^/]+)/responses_written$
type=counter
'help=The total number of responses written to an HTTP cache zone with a specific␣

→˓cache status.';

'angie_http_caches_bytes_written{zone="$1",status="$2"}' $p8s_value
path=~^/http/caches/([^/]+)/([^/]+)/bytes_written$
type=counter
'help=The total number of bytes written to an HTTP cache zone with a specific␣

→˓cache status.';

'angie_http_caches_size{zone="$1"}' $p8s_value
path=~^/http/caches/([^/]+)/size$
type=gauge
'help=The current size (in bytes) of cached responses in an HTTP cache zone.';

'angie_http_caches_shards_size{zone="$1",path="$2"}' $p8s_value
path=~^/http/caches/([^/]+)/shards/([^/]+)/size$
type=gauge
'help=The current size (in bytes) of cached responses in a shard path of an HTTP␣

→˓cache zone.';

'angie_http_limit_conns{zone="$1",status="$2"}' $p8s_value
path=~^/http/limit_conns/([^/]+)/([^/]+)$
type=counter
'help=The number of requests processed by an HTTP limit_conn zone with a specific␣

→˓result.';

'angie_http_limit_reqs{zone="$1",status="$2"}' $p8s_value
path=~^/http/limit_reqs/([^/]+)/([^/]+)$
type=counter
'help=The number of requests processed by an HTTP limit_reqs zone with a specific␣

→˓result.';

'angie_stream_server_zones_ssl_handshaked{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/ssl/handshaked$
type=counter
'help=The total number of successful SSL handshakes in a stream server zone.';

'angie_stream_server_zones_ssl_reuses{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/ssl/reuses$
type=counter

3.2. References and Indexes 159

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

'help=The total number of session reuses during SSL handshakes in a stream server␣
→˓zone.';

'angie_stream_server_zones_ssl_timedout{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/ssl/timedout$
type=counter
'help=The total number of timed-out SSL handshakes in a stream server zone.';

'angie_stream_server_zones_ssl_failed{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/ssl/failed$
type=counter
'help=The total number of failed SSL handshakes in a stream server zone.';

'angie_stream_server_zones_connections_total{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/connections/total$
type=counter
'help=The total number of client connections received in a stream server zone.';

'angie_stream_server_zones_connections_processing{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/connections/processing$
type=gauge
'help=The number of client connections currently being processed in a stream␣

→˓server zone.';

'angie_stream_server_zones_connections_discarded{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/connections/discarded$
type=counter
'help=The total number of client connections completed in a stream server zone␣

→˓without establishing a session.';

'angie_stream_server_zones_connections_passed{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/connections/passed$
type=counter
'help=The total number of client connections in a stream server zone passed for␣

→˓handling to a different listening socket.';

'angie_stream_server_zones_sessions{zone="$1",status="$2"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/sessions/([^/]+)$
type=counter
'help=The number of sessions finished with a specific status in a stream server␣

→˓zone.';

'angie_stream_server_zones_data_received{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/data/received$
type=counter
'help=The total number of bytes received from clients in a stream server zone.';

'angie_stream_server_zones_data_sent{zone="$1"}' $p8s_value
path=~^/stream/server_zones/([^/]+)/data/sent$
type=counter
'help=The total number of bytes sent to clients in a stream server zone.';

'angie_stream_upstreams_peers_backup{upstream="$1",peer="$2"}' $p8st_all_ups_backup

3.2. References and Indexes 160

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/backup$
type=gauge
'help=The "stream" upstream peer backup group level.';

'angie_stream_upstreams_peers_state{upstream="$1",peer="$2"}' $p8st_all_ups_state
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/state$
type=gauge
'help=The current state of an upstream peer in "stream": 1 - up, 2 - down, 3 -␣

→˓unavailable, 4 - recovering, 5 - unhealthy, 6 - checking, or 7 - draining.';

'angie_stream_upstreams_peers_selected_current{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/selected/current$
type=gauge
'help=The number of sessions currently being processed by an upstream peer in

→˓"stream".';

'angie_stream_upstreams_peers_selected_total{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/selected/total$
type=counter
'help=The total number of attempts to use an upstream peer in "stream".';

'angie_stream_upstreams_peers_data_sent{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/data/sent$
type=counter
'help=The total number of bytes sent to an upstream peer in "stream".';

'angie_stream_upstreams_peers_data_received{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/data/received$
type=counter
'help=The total number of bytes received from an upstream peer in "stream".';

'angie_stream_upstreams_peers_data_pkt_sent{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/data/pkt_sent$
type=counter
'help=The total number of packets sent to an upstream peer in "stream".';

'angie_stream_upstreams_peers_data_pkt_received{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/data/pkt_received$
type=counter
'help=The total number of packets received from an upstream peer in "stream".';

'angie_stream_upstreams_peers_health_fails{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/health/fails$
type=counter
'help=The total number of unsuccessful attempts to communicate with an upstream␣

→˓peer in "stream".';

'angie_stream_upstreams_peers_health_unavailable{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/health/unavailable$
type=counter
'help=The number of times when an upstream peer in "stream" became "unavailable"␣

→˓due to reaching the max_fails limit.';

3.2. References and Indexes 161

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

'angie_stream_upstreams_peers_health_downtime{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/health/downtime$
type=counter
'help=The total time (in milliseconds) that an upstream peer in "stream" was

→˓"unavailable".';

'angie_stream_upstreams_peers_health_connect_time{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/health/connect_time$
type=gauge
'help=Average time (in milliseconds) to connect to an upstream peer in "stream".';

'angie_stream_upstreams_peers_health_first_byte_time{upstream="$1",peer="$2"}' $p8s_
→˓value

path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/health/first_byte_time$
type=gauge
'help=Average time (in milliseconds) to receive the first byte from an upstream␣

→˓peer in "stream".';

'angie_stream_upstreams_peers_health_last_byte_time{upstream="$1",peer="$2"}' $p8s_
→˓value

path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/health/last_byte_time$
type=gauge
'help=Average time (in milliseconds) of the whole communication session with an␣

→˓upstream peer in "stream".';

'angie_stream_upstreams_peers_health_probes_count{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/health/probes/count$
type=counter
'help=The total number of probes for this peer.';

'angie_stream_upstreams_peers_health_probes_fails{upstream="$1",peer="$2"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/peers/([^/]+)/health/probes/fails$
type=counter
'help=The total number of failed probes for this peer.';

'angie_stream_upstreams_backup_switch_active{upstream="$1"}' $p8s_value
path=~^/stream/upstreams/([^/]+)/backup_switch/active$
type=gauge
'help=The currently active "stream" upstream servers backup group level.';

}

map $p8s_value $p8st_all_ups_state {
volatile;
"up" 1;
"down" 2;
"unavailable" 3;
"recovering" 4;
"unhealthy" 5;
"checking" 6;
"draining" 7;
"busy" 8;
default 0;

}

map $p8s_value $p8st_all_ups_backup {

3.2. References and Indexes 162

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

volatile;
"false" 0;
"true" 1;
default $p8s_value;

}

Usage:

http {

include prometheus_all.conf;

...

server {

listen 80;

location =/p8s {
prometheus all;

}

...

}
}

$ curl localhost/p8s

Angie Prometheus template "all"
...

Directives

prometheus

Syntax prometheus template_name;
Default —
Context location

Specifies a template handler for the location context, defined by the prometheus_template directive.
When requested, this location calculates and returns the template metrics in Prometheus format.

location =/p8s {
prometheus custom;

}

$ curl localhost/p8s

Angie Prometheus template "custom"
...

3.2. References and Indexes 163

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

prometheus_template

Syntax prometheus_template template_name { ... }
Default —
Context http

Defines a named template of metrics collected and exported by Angie, for use with the prometheus
directive.

ò Note

Angie also includes a ready-made all template that contains a set of the most commonly used metrics.

Can contain any number of metric definitions, each having the following structure: <metric_name>
<variable> [path=<match_string>] [type=<type>] [help=<help>].

metric_name Sets the metric name under which it will be added in Prometheus format to the
response. Can contain an optional labels section (...), for example:

http_requests_total{method="$1",code="$2"}
Label values can use Angie variables; if match_string is defined as a regular
expression, you can also use capture groups defined in that expression. Such
variables and groups are evaluated when obtaining the metric value, which is set
by variable.

variable Sets the name of the variable that will be evaluated and added as the metric
value to the response. If the variable doesn't exist or the evaluation result is
empty (""), the metric is not added.

The metric is calculated with the value set by variable; upon successful evaluation, the metric is added
to the response, for example:

'angie_time{version="$angie_version"}' $msec;

$ curl localhost/p8s

angie_time{version="1.10.0"} 1695119820.562

path=match_string Is matched against all endpoint paths of metrics in the /status API subtree of
Angie, allowing multiple instances of the metric to be added to the response at
once.

During matching, paths are taken with the leading slash but without the trailing one, for example
/angie/generation; matching is case-insensitive. There are two matching methods:

path=exact_match Checked by character-by-character comparison.
path=~regular_expressionChecked using the PCRE library; can define capture groups for use in the labels

of the metric_name field.

If match_string matches any path, the value of the Angie metric at that path is stored in the $p8s_value
variable, which can be used in the variable field when path= is specified.

In the case of regular expressions, there can be multiple matching paths; the metric is added to the
response for each match. Combined with capture groups, this allows obtaining a series of metrics with
the same name and different labels, for example:

3.2. References and Indexes 164

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

'angie_slabs_slots_free{zone="$1",size="$2"}' $p8s_value
path=~^/slabs/([^/]+)/slots/([^/]+)/free$;

This definition adds metrics for all zones and all sizes that currently exist in the configuration:

angie_slabs_slots_free{zone="one",size="8"} 502
angie_slabs_slots_free{zone="one",size="16"} 249
angie_slabs_slots_free{zone="one",size="32"} 122
angie_slabs_slots_free{zone="one",size="128"} 22
angie_slabs_slots_free{zone="one",size="512"} 4
angie_slabs_slots_free{zone="two",size="8"} 311
...

If there are no matches (with any matching method), the metric is not added.

ò Note

The path= parameter is available only when Angie is built with the API module.

type=type,
help=help

Set the metric's type and help string, respectively, in the Prometheus format,
which are added with the metric to the response without changes or validation.

Built-in Variables

The http_prometheus module has a built-in variable that receives its value when matching metric paths
from the /status section of the Angie API with the match_string parameter of metrics defined by the
prometheus_template directive.

$p8s_value

If the match_string of a metric defined in prometheus_template matches any path, the value of the
Angie metric located at that path is stored in the $p8s_value variable. It is intended for use in the
variable field in metric definitions that are calculated based on the path= parameter.

The values of Angie metrics stored in the $p8s_value variable do not always meet the requirements of
the Prometheus format. In such cases, you can use the map directive, for example to convert strings to
numbers:

map $p8s_value $ups_state_n {
up 0;
unavailable 1;
down 2;
default 3;

}

prometheus_template main {
'angie_http_upstreams_state{upstream="$1",peer="$2"}' $ups_state_n

path=~^/http/upstreams/([^/]+)/peers/([^/]+)/state$;
}

If the Angie metric has a boolean value, that is true or false, the variable receives the value "1" or
"0" respectively; if the metric value is null, the variable will be "(null)". For dates, the integer UNIX
epoch format is used.

3.2. References and Indexes 165

https://prometheus.io/docs/instrumenting/exposition_formats/#comments-help-text-and-type-information

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Proxy

Allows passing requests to another (proxied) server.

Configuration Example

location / {
proxy_pass http://localhost:8000;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;

}

Directives

proxy_bind

Syntax proxy_bind address [transparent] | off;
Default —
Context http, server, location

Makes outgoing connections to a proxied server originate from the specified local IP address with an
optional port. Parameter value can contain variables. The special value off cancels the effect of the
proxy_bind directive inherited from the previous configuration level, which allows the system to auto-
assign the local IP address and port.

The transparent parameter allows outgoing connections to a proxied server originate from a non-local
IP address, for example, from a real IP address of a client:

proxy_bind $remote_addr transparent;

In order for this parameter to work, it is usually necessary to run Angie worker processes with the
superuser privileges. On Linux it is not required as if the transparent parameter is specified, worker
processes inherit the CAP_NET_RAW capability from the master process.

s Important

It is necessary to configure kernel routing table to intercept network traffic from the proxied server.

proxy_buffer_size

Syntax proxy_buffer_size size;
Default proxy_buffer_size 4k|8k;
Context http, server, location

Sets the size of the buffer used for reading the first part of the response received from the proxied server.
This part usually contains a small response header. By default, the buffer size is equal to one memory
page. This is either 4K or 8K, depending on a platform. It can be made smaller, however.

proxy_buffering

Syntax proxy_buffering on | off;
Default proxy_buffering on;
Context http, server, location

3.2. References and Indexes 166

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Enables or disables buffering of responses from the proxied server.

on Angie receives a response from the proxied server as soon as possible, saving
it into the buffers set by the proxy_buffer_size and proxy_buffers directives.
If the whole response does not fit into memory, a part of it can be saved to
a temporary file on the disk. Writing to temporary files is controlled by the
proxy_max_temp_file_size and proxy_temp_file_write_size directives.

off The response is passed to a client synchronously, immediately as it is received.
Angie will not try to read the whole response from the proxied server. The
maximum size of the data that Angie can receive from the server at a time is set
by the proxy_buffer_size directive.

Buffering can also be enabled or disabled by passing "yes" or "no" in the "X-Accel-Buffering" response
header field. This capability can be disabled using the proxy_ignore_headers directive.

proxy_buffers

Syntax proxy_buffers number size;
Default proxy_buffers 8 4k | 8k;
Context http, server, location

Sets the number and size of the buffers used for reading a response from the proxied server, for a single
connection.

By default, the buffer size is equal to one memory page. This is either 4K or 8K, depending on a platform.

proxy_busy_buffers_size

Syntax proxy_busy_buffers_size size;
Default proxy_busy_buffers_size 8k | 16k;
Context http, server, location

When buffering of responses from the proxied server is enabled, limits the total size of buffers that can
be busy sending a response to the client while the response is not yet fully read. In the meantime, the
rest of the buffers can be used for reading the response and, if needed, buffering part of the response to
a temporary file.

By default, size is limited by the size of two buffers set by the proxy_buffer_size and proxy_buffers
directives.

proxy_cache

Syntax proxy_cache zone | off [path=path];
Default proxy_cache off;
Context http, server, location

Defines a shared memory zone for caching. A zone can be used in the configuration multiple times. The
parameter's value allows variables.

off disables caching inherited from the previous configuration level.

Added in version 1.2.0: PRO

3.2. References and Indexes 167

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

In Angie PRO, you can specify multiple proxy_cache_path directives that share the same keys_zone
value to implement cache sharding. If you do, set the path parameter of the proxy_cache directive that
references this keys_zone:

path=path The value is determined when the backend's response is cached, which implies
that variables are involved, including those that store some information from the
response.
If the response is obtained from the cache, path isn't reevaluated; thus, a response
from the cache will preserve its original path until it's deleted from the cache.

This allows choosing between cache paths by applying map directives or scripts to responses from the
backend. A Content-Type example:

proxy_cache_path /cache/one keys_zone=zone:10m;
proxy_cache_path /cache/two keys_zone=zone;

map $upstream_http_content_type $cache {
~^text/ one;
default two;

}

server {
...
location / {

proxy_pass http://backend;
proxy_cache zone path=/cache/$cache;

}
}

This adds two cache paths and a variable mapping to choose between them. If Content-Type starts
with text/, the first path is used; otherwise, the second.

proxy_cache_background_update

Syntax proxy_cache_background_update on | off;
Default proxy_cache_background_update off;
Context http, server, location

Allows starting a background subrequest to update an expired cache item, while a stale cached response
is returned to the client.

. Attention

Note that it is necessary to allow the usage of a stale cached response when it is being updated.

proxy_cache_bypass

Syntax proxy_cache_bypass ...;
Default —
Context http, server, location

Defines conditions under which the response will not be taken from a cache. If at least one value of the
string parameters is not empty and is not equal to "0" then the response will not be taken from the

3.2. References and Indexes 168

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

cache:

proxy_cache_bypass $cookie_nocache $arg_nocache$arg_comment;
proxy_cache_bypass $http_pragma $http_authorization;

Can be used along with the proxy_no_cache directive.

proxy_cache_convert_head

Syntax proxy_cache_convert_head on | off;
Default proxy_cache_convert_head on;
Context http, server, location

Enables or disables the conversion of the "HEAD" method to "GET" for caching. When the conversion
is disabled, the cache key should be configured to include the $request_method .

proxy_cache_key

Syntax proxy_cache_key string ;
Default proxy_cache_key $scheme$proxy_host$request_uri;
Context http, server, location

Defines a key for caching, for example

proxy_cache_key "$host$request_uri $cookie_user";

By default, the directive's value is close to the string

proxy_cache_key $scheme$proxy_hosturiis_args$args;

proxy_cache_lock

Syntax proxy_cache_lock on | off;
Default proxy_cache_lock off;
Context http, server, location

When enabled, only one request at a time will be allowed to populate a new cache element identified
according to the proxy_cache_key directive by passing a request to a proxied server. Other requests of
the same cache element will either wait for a response to appear in the cache or the cache lock for this
element to be released, up to the time set by the proxy_cache_lock_timeout directive.

proxy_cache_lock_age

Syntax proxy_cache_lock_age time;
Default proxy_cache_lock_age 5s;
Context http, server, location

If the last request passed to the proxied server for populating a new cache element has not completed
for the specified time, one more request may be passed to the proxied server.

3.2. References and Indexes 169

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxy_cache_lock_timeout

Syntax proxy_cache_lock_timeout time;
Default proxy_cache_lock_timeout 5s;
Context http, server, location

Sets a timeout for proxy_cache_lock . When the time expires, the request will be passed to the proxied
server, however, the response will not be cached.

proxy_cache_max_range_offset

Syntax proxy_cache_max_range_offset number ;
Default —
Context http, server, location

Sets an offset in bytes for byte-range requests. If the range is beyond the offset, the range request will
be passed to the proxied server and the response will not be cached.

proxy_cache_methods

Syntax proxy_cache_methods GET | HEAD | POST ...;
Default proxy_cache_methods GET HEAD;
Context http, server, location

If the client request method is listed in this directive then the response will be cached. "GET" and
"HEAD" methods are always added to the list, though it is recommended to specify them explicitly. See
also the proxy_no_cache directive.

proxy_cache_min_uses

Syntax proxy_cache_min_uses number ;
Default proxy_cache_min_uses 1;
Context http, server, location

Sets the number of requests after which the response will be cached.

proxy_cache_path

Syntax proxy_cache_path path [levels=levels] [use_temp_path=on | off]
keys_zone=name:size[:file=file] [inactive=time] [max_size=size] [min_free=size]
[manager_files=number] [manager_sleep=time] [manager_threshold=time]
[loader_files=number] [loader_sleep=time] [loader_threshold=time];

Default —
Context http

Sets the path and other parameters of a cache. Cache data are stored in files. The file name in a cache
is a result of applying the MD5 function to the cache key .

levels defines hierarchy levels of a cache: from 1 to 3, each level accepts values 1 or 2.

For example, in the following configuration:

3.2. References and Indexes 170

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxy_cache_path /data/angie/cache levels=1:2 keys_zone=one:10m;

file names in a cache will look like this:

/data/angie/cache/c/29/b7f54b2df7773722d382f4809d65029c

A cached response is first written to a temporary file, and then the file is renamed. Temporary files and
the cache can be put on different file systems. However, be aware that in this case a file is copied across
two file systems instead of the cheap renaming operation. It is thus recommended that for any given
location both cache and a directory holding temporary files are put on the same file system.

use_temp_path=on
| off

Sets the directory for temporary files

on If this parameter is omitted or set to the value on, the directory set by the
proxy_temp_path directive for the given location will be used.

off Temporary files will be put directly in the cache directory.
keys_zone Configures the name and size for a shared memory zone to store all active keys

and information about data.
One megabyte zone can store about 8,000 keys.
When the optional file parameter is used with keys_zone, Angie flushes the
contents of this zone to the disk on master process exit and attempts to restore it
at the same memory address at next startup or after a binary upgrade; to achieve
more robust persistence and improve cache loading time.
If the zone cannot be restored due to a change in size, binary version incompat-
ibility, or other reasons, Angie will log an alert (failed to restore zone at
address) and will not use the zone restore mechanism. Instead, the incompatible
file will be renamed as .old; you can either delete it, or restore its name and
revert Angie to the configuration and version where it was created in the first
place.

. Attention

Ensure that the file path is valid and has the correct permissions for Angie to
use it and prevent unauthorized access at the same time; relative paths are
prefix-based.

inactive Cached data that are not accessed during the time specified by this parameter
get removed from the cache regardless of their freshness.
By default, it is set to 10 minutes.

ò Note

Added in version 1.2.0: PRO

In Angie PRO, multiple proxy_cache_path directives that share the same keys_zone value are al-
lowed. Only the first such directive may set the shared memory zone size. The choice between such
directives is made by the path parameter of the relevant proxy_cache directive.

A special cache manager process monitors the maximum cache size and the minimum amount of free
space on the file system with cache and when the size is exceeded or there is not enough free space, it
removes the least recently used data. The data is removed in iterations.

3.2. References and Indexes 171

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

max_size maximum cache size
min_free minimum amount of free space on the file system with cache
manager_files limits the number of items to be deleted during one iteration

By default, 100
manager_threshold limits the duration of one iteration

By default, 200 milliseconds
manager_sleep configures a pause between iterations

By default, 50 milliseconds

A minute after Angie starts, the special cache loader process is activated. It scans the file system for
previously cached data and loads that information into the cache zone. This process is carried out in
iterations; each iteration processes a limited number of items set by loader_files, ensures it does not
exceed the loader_threshold, then pauses for a short interval set by loader_sleep before proceeding
to the next batch. These iterations continue until the loader has processed all existing cache entries on
disk:

loader_files limits the number of items to load during one iteration
By default, 100

loader_threshold limits the duration of one iteration
By default, 200 milliseconds

loader_sleep configures a pause between iterations
By default, 50 milliseconds

ò Note

Setting the file path for the keys_zone parameter doesn't interfere with the cache loader behavior.

proxy_cache_revalidate

Syntax proxy_cache_revalidate on | off;
Default proxy_cache_revalidate off;
Context http, server, location

Enables revalidation of expired cache items using conditional requests with the "If-Modified-Since" and
"If-None-Match" header fields.

proxy_cache_use_stale

Syntax proxy_cache_use_stale error | timeout | invalid_header | updating | http_500
| http_502 | http_503 | http_504 | http_403 | http_404 | http_429 | off ...;

Default proxy_cache_use_stale off;
Context http, server, location

Determines in which cases a stale cached response can be used during communication with the proxied
server. The directive's parameters match the parameters of the proxy_next_upstream directive.

error permits using a stale cached response if a proxied server to process a request
cannot be selected.

updating additional parameter, permits using a stale cached response if it is currently being
updated. This allows minimizing the number of accesses to proxied servers when
updating cached data.

3.2. References and Indexes 172

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Using a stale cached response can also be enabled directly in the response header for a specified number
of seconds after the response became stale:

• The stale-while-revalidate extension of the "Cache-Control" header field permits using a stale
cached response if it is currently being updated.

• The stale-if-error extension of the "Cache-Control" header field permits using a stale cached re-
sponse in case of an error.

ò Note

This has lower priority than using the directive parameters.

To minimize the number of accesses to proxied servers when populating a new cache element, the
proxy_cache_lock directive can be used.

proxy_cache_valid

Syntax proxy_cache_valid [code ...] time;
Default —
Context http, server, location

Sets caching time for different response codes. For example, the following directives

proxy_cache_valid 200 302 10m;
proxy_cache_valid 404 1m;

set 10 minutes of caching for responses with codes 200 and 302 and 1 minute for responses with code
404.

If only caching time is specified

proxy_cache_valid 5m;

then only 200, 301, and 302 responses are cached.

In addition, the any parameter can be specified to cache any responses:

proxy_cache_valid 200 302 10m;
proxy_cache_valid 301 1h;
proxy_cache_valid any 1m;

Parameters can also be set directly in the response header. This has higher priority than setting of
caching time using the directive.

• The "X-Accel-Expires" header field sets caching time of a response in seconds. The zero value
disables caching for a response. If the value starts with the @ prefix, it sets an absolute time in
seconds since Epoch, up to which the response may be cached.

• If the header does not include the "X-Accel-Expires" field, parameters of caching may be set in the
header fields "Expires" or "Cache-Control".

• If the header includes the "Set-Cookie" field, such a response will not be cached.

• If the header includes the "Vary" field with the special value "*", such a response will not be
cached. If the header includes the "Vary" field with another value, such a response will be cached
taking into account the corresponding request header fields.

Processing of one or more of these response header fields can be disabled using the proxy_ignore_headers
directive.

3.2. References and Indexes 173

https://datatracker.ietf.org/doc/html/rfc5861#section-3
https://datatracker.ietf.org/doc/html/rfc5861#section-4

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxy_cache_valid 200 302 10m;
proxy_cache_valid 404 1m;

set caching time to 10 minutes for responses with codes 200 and 302 and 1 minute for responses with
code 404.

If only caching time is specified,

proxy_cache_valid 5m;

then only responses 200, 301, and 302 are cached.

In addition, any responses can be cached using the any parameter:

proxy_cache_valid 200 302 10m;
proxy_cache_valid 301 1h;
proxy_cache_valid any 1m;

ò Note

Parameters of caching can also be set directly in the response header. This has higher priority than
setting of caching time using the directive.

• The "X-Accel-Expires" header field sets caching time of a response in seconds. The zero value
disables caching for a response. If the value starts with the @ prefix, it sets an absolute time in
seconds since Epoch, up to which the response may be cached.

• If the header does not include the "X-Accel-Expires" field, parameters of caching may be set in the
header fields "Expires" or "Cache-Control".

• If the header includes the "Set-Cookie" field, such a response will not be cached.

• If the header includes the "Vary" field with the special value "*", such a response will not be
cached. If the header includes the "Vary" field with another value, such a response will be cached
taking into account the corresponding request header fields.

Processing of one or more of these response header fields can be disabled using the proxy_ignore_headers
directive.

proxy_connect_timeout

Syntax proxy_connect_timeout time;
Default proxy_connect_timeout 60s;
Context http, server, location

Defines a timeout for establishing a connection with a proxied server. It should be noted that this
timeout cannot usually exceed 75 seconds.

proxy_connection_drop

Syntax proxy_connection_drop time | on | off;
Default proxy_connection_drop off;
Context http, server, location

Enables termination of all connections to the proxied server after it has been removed from the group or
marked as permanently unavailable by a reresolve process or the API command DELETE.

3.2. References and Indexes 174

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

A connection is terminated when the next read or write event is processed for either the client or the
proxied server.

Setting time enables a connection termination timeout ; with on set, connections are dropped immediately.

proxy_cookie_domain

Syntax proxy_cookie_domain off;
proxy_cookie_domain domain replacement ;

Default proxy_cookie_domain off;
Context http, server, location

Sets a text that should be changed in the domain attribute of the "Set-Cookie" header fields of a proxied
server response. Suppose a proxied server returned the "Set-Cookie" header field with the attribute
"domain=localhost". The directive

proxy_cookie_domain localhost example.org;

will rewrite this attribute to "domain=example.org".

A dot at the beginning of the domain and replacement strings and the domain attribute is ignored.
Matching is case-insensitive.

The domain and replacement strings can contain variables:

proxy_cookie_domain www.$host $host;

The directive can also be specified using regular expressions. In this case, domain should start with
a "~" symbol. A regular expression can contain named and positional captures, and replacement can
reference them:

proxy_cookie_domain ~\.(?P<sl_domain>[-0-9a-z]+\.[a-z]+)$ $sl_domain;

Multiple proxy_cookie_domain directives may be specified at the same level:

proxy_cookie_domain localhost example.org;
proxy_cookie_domain ~\.([a-z]+\.[a-z]+)$ $1;

If several directives can be applied to the cookie, the first matching directive will be chosen.

The off parameter cancels the effect of the proxy_cookie_domain directives inherited from the previous
configuration level.

proxy_cookie_flags

Syntax proxy_cookie_flags off | cookie [flag ...];
Default proxy_cookie_flags off;
Context http, server, location

Sets one or more flags for the cookie. The cookie can contain text, variables, and their combinations.
The flag can contain text, variables, and their combinations.

The secure, httponly, samesite=strict, samesite=lax, samesite=none parameters add the corre-
sponding flags.

The nosecure, nohttponly, nosamesite parameters remove the corresponding flags.

The cookie can also be specified using regular expressions. In this case, cookie should start with a "~"
symbol.

3.2. References and Indexes 175

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Several proxy_cookie_flags directives can be specified on the same configuration level:

proxy_cookie_flags one httponly;
proxy_cookie_flags ~ nosecure samesite=strict;

If several directives can be applied to the cookie, the first matching directive will be chosen. In the
example, the httponly flag is added to the cookie one, for all other cookies the samesite=strict flag is
added and the secure flag is deleted.

The off parameter cancels the effect of the proxy_cookie_flags directives inherited from the previous
configuration level.

proxy_cookie_path

Syntax proxy_cookie_path off;
proxy_cookie_path path replacement ;

Default proxy_cookie_path off;
Context http, server, location

Sets a text that should be changed in the path attribute of the Set-Cookie header fields of a proxied
server response. Suppose a proxied server returned the "Set-Cookie" header field with the attribute
"path=/two/some/uri/". The directive

proxy_cookie_path /two/ /;

will rewrite this attribute to "path=/some/uri/".

The path and replacement strings can contain variables:

proxy_cookie_path $uri /some$uri;

The directive can also be specified using regular expressions. In this case, path should either start with
a "~" symbol for a case-sensitive matching, or with the "~*" symbols for case-insensitive matching. The
regular expression can contain named and positional captures, and replacement can reference them:

proxy_cookie_path ~*^/user/([^/]+) /u/$1;

Several proxy_cookie_path directives can be specified on the same level:

proxy_cookie_path /one/ /;
proxy_cookie_path / /two/;

If several directives can be applied to the cookie, the first matching directive will be chosen.

The off parameter cancels the effect of the proxy_cookie_path directives inherited from the previous
configuration level.

proxy_force_ranges

Syntax proxy_force_ranges on | off;
Default proxy_force_ranges off;
Context http, server, location

Enables byte-range support for both cached and uncached responses from the proxied server regardless
of the "Accept-Ranges" field in these responses.

3.2. References and Indexes 176

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxy_headers_hash_bucket_size

Syntax proxy_headers_hash_bucket_size size;
Default proxy_headers_hash_bucket_size 64;
Context http, server, location

Sets the bucket size for hash tables used by the proxy_hide_header and proxy_set_header directives.
The details of setting up hash tables are provided separately .

proxy_headers_hash_max_size

Syntax proxy_headers_hash_max_size size;
Default proxy_headers_hash_max_size 512;
Context http, server, location

Sets the maximum size of hash tables used by the proxy_hide_header and proxy_set_header directives.
The details of setting up hash tables are provided separately .

proxy_hide_header

Syntax proxy_hide_header field ;
Default —
Context http, server, location

By default, Angie does not pass the header fields Date, Server, "X-Pad", and X-Accel-... from the
response of a proxied server to a client. The proxy_hide_header directive sets additional fields that will
not be passed. If, on the contrary, the passing of fields needs to be permitted, the proxy_pass_header
directive can be used.

proxy_http_version

Syntax proxy_http_version 1.0 | 1.1 | 3;
Default proxy_http_version 1.0;
Context http, server, location, if in location, limit_except

Sets the HTTP protocol version for proxying. By default, version 1.0 is used. Version 1.1 or higher is
recommended for use with keepalive connections.

proxy_http3_hq

Syntax proxy_http3_hq on | off;
Default proxy_http3_hq off;
Context http, server

Toggles the special hq-interop negotiation mode, which is used for QUIC interop tests that Angie relies
on.

. Attention

Enable this mode only to run specialized tests that explicitly require it.

3.2. References and Indexes 177

https://github.com/marten-seemann/quic-interop-runner

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxy_http3_max_concurrent_streams

Syntax proxy_http3_max_concurrent_streams number ;
Default proxy_http3_max_concurrent_streams 128;
Context http, server

Initializes HTTP/3 and QUIC settings and sets the maximum number of concurrent HTTP/3 request
streams in a connection. Requires enabling keepalive connections.

proxy_http3_max_table_capacity

Syntax proxy_http3_max_table_capacity number ;
Default proxy_http3_max_table_capacity 4096;
Context http, server, location

Sets the dynamic table capacity for proxy connections.

ò Note

A similar http3_max_table_capacity directive does this for server connections. To avoid errors,
dynamic table usage is disabled when proxying with caching is enabled.

proxy_http3_stream_buffer_size

Syntax proxy_http3_stream_buffer_size size;
Default proxy_http3_stream_buffer_size 64k;
Context http, server

Sets the size of the read-write buffer used with QUIC streams.

proxy_ignore_client_abort

Syntax proxy_ignore_client_abort on | off;
Default proxy_ignore_client_abort off;
Context http, server, location

Determines whether the connection with a proxied server should be closed when a client closes the
connection without waiting for a response.

proxy_ignore_headers

Syntax proxy_ignore_headers field ...;
Default —
Context http, server, location

Disables processing of certain response header fields from the proxied server. The following fields can be
ignored: "X-Accel-Redirect", "X-Accel-Expires", "X-Accel-Limit-Rate", "X-Accel-Buffering", "X-Accel-
Charset", "Expires", "Cache-Control", "Set-Cookie", and "Vary".

If not disabled, processing of these header fields has the following effect:

3.2. References and Indexes 178

https://www.ietf.org/archive/id/draft-ietf-quic-qpack-20.html#name-dynamic-table

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

• "X-Accel-Expires", "Expires", "Cache-Control", "Set-Cookie" and "Vary" set the parameters of
response caching ;

• "X-Accel-Redirect" performs an internal redirect to the specified URI;

• "X-Accel-Limit-Rate" sets the rate limit for transmission of a response to a client;

• "X-Accel-Buffering" enables or disables buffering of a response;

• "X-Accel-Charset" sets the desired charset of a response.

proxy_intercept_errors

Syntax proxy_intercept_errors on | off;
Default proxy_intercept_errors off;
Context http, server, location

Determines whether proxied responses with codes greater than or equal to 300 should be passed to a
client or be intercepted and redirected to Angie for processing with the error_page directive.

proxy_limit_rate

Syntax proxy_limit_rate rate;
Default proxy_limit_rate 0;
Context http, server, location

Limits the speed of reading the response from the proxied server. The rate is specified in bytes per
second and can contain variables.

0 disables rate limiting

ò Note

The limit is set per a request, and so if Angie simultaneously opens two connections to the proxied
server, the overall rate will be twice as much as the specified limit. The limitation works only if
buffering of responses from the proxied server is enabled.

proxy_max_temp_file_size

Syntax proxy_max_temp_file_size size;
Default proxy_max_temp_file_size 1024m;
Context http, server, location

When buffering of responses from the proxied server is enabled, and the whole response does not fit into
the buffers set by the proxy_buffer_size and proxy_buffers directives, a part of the response can be
saved to a temporary file. This directive sets the maximum size of the temporary file. The size of data
written to the temporary file at a time is set by the proxy_temp_file_write_size directive.

0 disables buffering of responses to temporary files

3.2. References and Indexes 179

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ò Note

This restriction does not apply to responses that will be cached or stored on disk .

proxy_method

Syntax proxy_method method ;
Default —
Context http, server, location

Specifies the HTTP method to use in requests forwarded to the proxied server instead of the method
from the client request. Parameter value can contain variables.

proxy_next_upstream

Syntax proxy_next_upstream error | timeout | invalid_header | http_500 | http_502 |
http_503 | http_504 | http_403 | http_404 | http_429 | non_idempotent | off ...;

Default proxy_next_upstream error timeout;
Context http, server, location

Specifies in which cases a request should be passed to the next server in the upstream pool :

error an error occurred while establishing a connection with the server, passing a re-
quest to it, or reading the response header;

timeout a timeout has occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

invalid_header a server returned an empty or invalid response;
http_500 a server returned a response with the code 500;
http_502 a server returned a response with the code 502;
http_503 a server returned a response with the code 503;
http_504 a server returned a response with the code 504;
http_403 a server returned a response with the code 403;
http_404 a server returned a response with the code 404;
http_429 a server returned a response with the code 429;
non_idempotent normally, requests with a non-idempotent method (POST, LOCK, PATCH) are not

passed to the next server if a request has been sent to an upstream server; enabling
this option explicitly allows retrying such requests;

off disables passing a request to the next server.

ò Note

One should bear in mind that passing a request to the next server is only possible if nothing has
been sent to a client yet. That is, if an error or timeout occurs in the middle of the transferring of a
response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt of communication with a server.

3.2. References and Indexes 180

https://datatracker.ietf.org/doc/html/rfc7231#section-4-2-2

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

error
timeout
invalid_header

always considered unsuccessful attempts, even if they are not specified in the
directive

http_500
http_502
http_503
http_504
http_429

considered unsuccessful attempts only if they are specified in the directive

http_403
http_404

never considered unsuccessful attempts

Passing a request to the next server can be limited by the number of tries and by time.

proxy_next_upstream_timeout

Syntax proxy_next_upstream_timeout time;
Default proxy_next_upstream_timeout 0;
Context http, server, location

Limits the time during which a request can be passed to the next server.

0 turns off this limitation

proxy_next_upstream_tries

Syntax proxy_next_upstream_tries number ;
Default proxy_next_upstream_tries 0;
Context http, server, location

Limits the number of possible tries for passing a request to the next server.

0 turns off this limitation

proxy_no_cache

Syntax proxy_no_cache string ...;
Default —
Context http, server, location

Defines conditions under which the response will not be saved to a cache. If at least one value of the
string parameters is not empty and is not equal to "0" then the response will not be saved:

proxy_no_cache $cookie_nocache $arg_nocache$arg_comment;
proxy_no_cache $http_pragma $http_authorization;

Can be used along with the proxy_cache_bypass directive.

proxy_no_cache $cookie_nocache $arg_nocache$arg_comment;
proxy_no_cache $http_pragma $http_authorization;

Can be used together with the proxy_cache_bypass directive.

3.2. References and Indexes 181

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxy_pass

Syntax proxy_pass uri ;
Default —
Context location, if in location, limit_except

Sets the protocol and address of a proxied server and an optional URI to which a location should be
mapped. As a protocol, http or https can be specified. The address can be specified as a domain name
or IP address, and an optional port:

proxy_pass http://localhost:8000/uri/;

or as a UNIX domain socket path specified after the word unix and enclosed in colons:

proxy_pass http://unix:/tmp/backend.socket:/uri/;

If a domain name resolves to several addresses, all of them will be used in a round-robin fashion. In
addition, an address can be specified as a server group.

Parameter value can contain variables. In this case, if an address is specified as a domain name, the
name is searched among the described server groups, and, if not found, is determined using a resolver .

A request URI is passed to the server as follows:

• If the proxy_pass directive is specified with a URI, then when a request is passed to the server,
the part of a normalized request URI matching the location is replaced by a URI specified in the
directive:

location /name/ {
proxy_pass http://127.0.0.1/remote/;

}

• If proxy_pass is specified without a URI, the request URI is passed to the server in the same
form as sent by a client when the original request is processed, or the full normalized request URI
is passed when processing the changed URI:

location /some/path/ {
proxy_pass http://127.0.0.1;

}

In some cases, the part of a request URI to be replaced cannot be determined:

• When location is specified using a regular expression, and also inside named location.

In these cases, proxy_pass should be specified without a URI.

• When the URI is changed inside a proxied location using the rewrite directive, and this same
configuration will be used to process a request (break):

location /name/ {
rewrite /name/([^/]+) /users?name=$1 break;
proxy_pass http://127.0.0.1;

}

In this case, the URI specified in the directive is ignored and the full changed request URI is passed to
the server.

• When variables are used in proxy_pass:

location /name/ {
proxy_pass http://127.0.0.1$request_uri;

}

3.2. References and Indexes 182

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

In this case, if URI is specified in the directive, it is passed to the server as is, replacing the original
request URI.

WebSocket proxying requires special configuration.

proxy_pass_header

Syntax proxy_pass_header field ...;
Default —
Context http, server, location

Permits passing otherwise disabled header fields from a proxied server to a client.

proxy_pass_request_body

Syntax proxy_pass_request_body on | off;
Default proxy_pass_request_body on;
Context http, server, location

Indicates whether the original request body is passed to the proxied server.

location /x-accel-redirect-here/ {
proxy_method GET;
proxy_pass_request_body off;
proxy_set_header Content-Length "";

proxy_pass ...;
}

See also the proxy_set_header and proxy_pass_request_headers directives.

proxy_pass_request_headers

Syntax proxy_pass_request_headers on | off;
Default proxy_pass_request_headers on;
Context http, server, location

Indicates whether the header fields of the original request are passed to the proxied server.

location /x-accel-redirect-here/ {
proxy_method GET;
proxy_pass_request_headers off;
proxy_pass_request_body off;

proxy_pass ...;
}

See also the proxy_set_header and proxy_pass_request_body directives.

3.2. References and Indexes 183

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxy_pass_trailers

Syntax proxy_pass_trailers on | off;
Default proxy_pass_trailers off;
Context http, server, location

Allows passing trailer fields from a proxied server to a client.

A trailer section in HTTP/1.1 is explicitly enabled.

location / {
proxy_http_version 1.1;
proxy_set_header Connection "te";
proxy_set_header TE "trailers";
proxy_pass_trailers on;

proxy_pass ...;
}

proxy_quic_active_connection_id_limit

Syntax proxy_quic_active_connection_id_limit number ;
Default proxy_quic_active_connection_id_limit 2;
Context http, server

Sets the QUIC active_connection_id_limit transport parameter value. This is the maximum number
of active connection IDs that can be maintained per server.

proxy_quic_gso

Syntax proxy_quic_gso on | off;
Default proxy_quic_gso off;
Context http, server

Toggles sending data in QUIC -optimized batch mode using (generic segmentation offload).

proxy_quic_host_key

Syntax proxy_quic_host_key file;
Default —
Context http, server

Sets a file with the secret key used with QUIC to encrypt Stateless Reset and Address Validation tokens.
By default, a random key is generated at each restart. Tokens generated with old keys are not accepted.

proxy_read_timeout

Syntax proxy_read_timeout time;
Default proxy_read_timeout 60s;
Context http, server, location

3.2. References and Indexes 184

https://datatracker.ietf.org/doc/html/rfc9110#section-6.5.1
https://www.rfc-editor.org/rfc/rfc9000.html#name-connection-id
https://docs.kernel.org/networking/segmentation-offloads.html#generic-segmentation-offload
https://www.rfc-editor.org/rfc/rfc9000.html#name-stateless-reset
https://www.rfc-editor.org/rfc/rfc9000.html#address-validation

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Defines a timeout for reading a response from the proxied server. The timeout is set only between two
successive read operations, not for the transmission of the whole response. If the proxied server does not
transmit anything within this time, the connection is closed.

proxy_redirect

Syntax proxy_redirect default;
proxy_redirect off;
proxy_redirect redirect replacement ;

Default proxy_redirect default;
Context http, server, location

Sets the text that should be changed in the "Location" and "Refresh" header fields of a proxied server
response.

Suppose a proxied server returned the header field:

Location: http://localhost:8000/two/some/uri/

The directive

proxy_redirect http://localhost:8000/two/ http://frontend/one/;

will rewrite this string to:

Location: http://frontend/one/some/uri/

A server name may be omitted in the replacement string:

proxy_redirect http://localhost:8000/two/ /;

then the primary server's name and port, if different from 80, will be inserted.

The default replacement specified by the default parameter uses the parameters of the location and
proxy_pass directives. Hence, the two configurations below are equivalent:

location /one/ {
proxy_pass http://upstream:port/two/;
proxy_redirect default;

location /one/ {
proxy_pass http://upstream:port/two/;
proxy_redirect http://upstream:port/two/ /one/;

³ Caution

The default parameter is not permitted if proxy_pass is specified using variables.

A replacement string can contain variables:

proxy_redirect http://localhost:8000/ http://$host:$server_port/;

A redirect can also contain variables:

proxy_redirect http://$proxy_host:8000/ /;

3.2. References and Indexes 185

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

The directive can be specified using regular expressions. In this case, redirect should either start with
the "~" symbol for a case-sensitive matching, or with the "~*" symbols for case-insensitive matching.
The regular expression can contain named and positional captures, and replacement can reference them:

proxy_redirect ~^(http://[^:]+):\d+(/.+)$ $1$2;
proxy_redirect ~*/user/([^/]+)/(.+)$ http://$1.example.com/$2;

Several proxy_redirect directives can be specified on the same level:

proxy_redirect default;
proxy_redirect http://localhost:8000/ /;
proxy_redirect http://www.example.com/ /;

If several directives can be applied to the header fields of a proxied server response, the first matching
directive will be chosen.

The off parameter cancels the effect of the proxy_redirect directives inherited from the previous config-
uration level.

Using this directive, it is also possible to add host names to relative redirects issued by a proxied server:

proxy_redirect / /;

proxy_request_buffering

Syntax proxy_request_buffering on | off;
Default proxy_request_buffering on;
Context http, server, location

Enables or disables buffering of a client request body.

on the entire request body is read from the client before sending the request to a
proxied server.

off the request body is sent to the proxied server immediately as it is received. In
this case, the request cannot be passed to the next server if Angie already started
sending the request body.

When HTTP/1.1 chunked transfer encoding is used to send the original request body, the request body
will be buffered regardless of the directive value unless HTTP/1.1 is enabled for proxying.

proxy_send_lowat

Syntax proxy_send_lowat size;
Default proxy_send_lowat 0;
Context http, server, location

If the directive is set to a non-zero value, Angie will try to minimize the number of send operations on
outgoing connections to a proxied server by using either NOTE_LOWAT flag of the kqueue method, or
the SO_SNDLOWAT socket option, with the specified size.

ò Note

This directive is ignored on Linux, Solaris, and Windows.

3.2. References and Indexes 186

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxy_send_timeout

Syntax proxy_send_timeout time;
Default proxy_send_timeout 60s;
Context http, server, location

Sets a timeout for transmitting a request to the proxied server. The timeout is set only between two
successive write operations, not for the transmission of the whole request. If the proxied server does not
receive anything within this time, the connection is closed.

proxy_set_body

Syntax proxy_set_body value;
Default —
Context http, server, location

Allows redefining the request body passed to the proxied server. The value can contain text, variables,
and their combination.

proxy_set_header

Syntax proxy_set_header field value;
Default proxy_set_header Host $proxy_host;
Context http, server, location

Allows redefining or appending fields to the request header passed to the proxied server. The value
can contain text, variables, and their combinations. These directives are inherited from the previous
configuration level if and only if there are no proxy_set_header directives defined on the current level.
By default, only two fields are redefined:

proxy_set_header Host $proxy_host;
proxy_set_header Connection close;

If caching is enabled, the header fields "If-Modified-Since", "If-Unmodified-Since", "If-None-Match",
"If-Match", "Range", and "If-Range" from the original request are not passed to the proxied server.

An unchanged "Host" request header field can be passed like this:

proxy_set_header Host $http_host;

However, if this field is not present in a client request header then nothing will be passed. In such a case
it is better to use the $host variable - its value equals the server name in the "Host" request header field
or the primary server name if this field is not present:

proxy_set_header Host $host;

In addition, the server name can be passed together with the port of the proxied server:

proxy_set_header Host $host:$proxy_port;

If the value of a header field is an empty string then this field will not be passed to a proxied server:

proxy_set_header Accept-Encoding "";

3.2. References and Indexes 187

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxy_socket_keepalive

Syntax proxy_socket_keepalive on | off;
Default proxy_socket_keepalive off;
Context http, server, location

Configures the "TCP keepalive" behavior for outgoing connections to a proxied server.

off By default, the operating system's settings are in effect for the socket.
on The SO_KEEPALIVE socket option is turned on for the socket.

proxy_ssl_certificate

Syntax proxy_ssl_certificate file [file];
Default —
Context http, server, location

Specifies a file with the certificate in the PEM format used for authentication to a proxied HTTPS server.
Variables can be used in the file name.

Added in version 1.2.0.

When proxy_ssl_ntls is enabled, the directive accepts two arguments instead of one:

location /proxy {
proxy_ssl_ntls on;

proxy_ssl_certificate sign.crt enc.crt;
proxy_ssl_certificate_key sign.key enc.key;

proxy_ssl_ciphers "ECC-SM2-WITH-SM4-SM3:ECDHE-SM2-WITH-SM4-SM3:RSA";

proxy_pass https://backend:443;
}

proxy_ssl_certificate_cache

Syntax proxy_ssl_certificate_cache off;
proxy_ssl_certificate_cache max=N [inactive=time] [valid=time];

Default proxy_ssl_certificate_cache off;
Context http, server, location

Defines a cache that stores SSL certificates and secret keys specified using variables.

The directive supports the following parameters:

• max — sets the maximum number of elements in the cache. When the cache overflows, the least
recently used (LRU) elements are removed.

• inactive — defines the time after which an element is removed if it has not been accessed. The
default is 10 seconds.

• valid — defines the time during which a cached element is considered valid and can be reused.
The default is 60 seconds. After this period, certificates are reloaded or revalidated.

• off — disables the cache.

3.2. References and Indexes 188

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Example:

proxy_ssl_certificate $proxy_ssl_server_name.crt;
proxy_ssl_certificate_key $proxy_ssl_server_name.key;
proxy_ssl_certificate_cache max=1000 inactive=20s valid=1m;

proxy_ssl_certificate_key

Syntax proxy_ssl_certificate_key file [file];
Default —
Context http, server, location

Specifies a file with the secret key in the PEM format used for authentication to a proxied HTTPS server.

The value engine:`name`:id can be specified instead of the file, which loads a secret key with a specified
id from the OpenSSL engine name.

Variables can be used in the file name.

Added in version 1.2.0.

When proxy_ssl_ntls is enabled, the directive accepts two arguments instead of one:

location /proxy {
proxy_ssl_ntls on;

proxy_ssl_certificate sign.crt enc.crt;
proxy_ssl_certificate_key sign.key enc.key;

proxy_ssl_ciphers "ECC-SM2-WITH-SM4-SM3:ECDHE-SM2-WITH-SM4-SM3:RSA";

proxy_pass https://backend:443;
}

proxy_ssl_ciphers

Syntax proxy_ssl_ciphers ciphers;
Default proxy_ssl_ciphers DEFAULT;
Context http, server, location

Specifies the enabled ciphers for requests to a proxied HTTPS server. The ciphers are specified in the
format understood by the OpenSSL library.

The list of ciphers depends on the version of OpenSSL installed. The full list can be viewed using the
openssl ciphers command.

. Attention

The proxy_ssl_ciphers directive does not configure ciphers for TLS 1.3 when using OpenSSL. To
tune TLS 1.3 ciphers with OpenSSL, use the proxy_ssl_conf_command directive, which was added
to support advanced SSL configuration.

• In LibreSSL, TLS 1.3 ciphers can be configured using proxy_ssl_ciphers.

• In BoringSSL, TLS 1.3 ciphers cannot be configured at all.

3.2. References and Indexes 189

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxy_ssl_conf_command

Syntax proxy_ssl_conf_command name value;
Default —
Context http, server, location

Sets arbitrary OpenSSL configuration commands when establishing a connection with the proxied
HTTPS server.

s Important

The directive is supported when using OpenSSL 1.0.2 or higher. To configure TLS 1.3 ciphers with
OpenSSL, use the ciphersuites command.

Several proxy_ssl_conf_command directives can be specified on the same level. These directives are
inherited from the previous configuration level if and only if there are no proxy_ssl_conf_command
directives defined on the current level.

³ Caution

Note that configuring OpenSSL directly might result in unexpected behavior.

proxy_ssl_crl

Syntax proxy_ssl_crl file;
Default —
Context http, server, location

Specifies a file with revoked certificates (CRL) in the PEM format used to verify the certificate of the
proxied HTTPS server.

proxy_ssl_name

Syntax proxy_ssl_name name;
Default proxy_ssl_name $proxy_host;
Context http, server, location

Allows overriding the server name used to verify the certificate of the proxied HTTPS server and to be
passed through SNI when establishing a connection with the proxied HTTPS server.

By default, the host part of the proxy_pass URL is used.

proxy_ssl_ntls

Added in version 1.2.0.

Syntax proxy_ssl_ntls on | off;
Default proxy_ssl_ntls off;
Context http, server, location

Enables client-side support for NTLS using the TongSuo TLS library.

3.2. References and Indexes 190

https://docs.openssl.org/master/man3/SSL_CONF_cmd/
https://github.com/Tongsuo-Project/Tongsuo

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

location /proxy {
proxy_ssl_ntls on;

proxy_ssl_certificate sign.crt enc.crt;
proxy_ssl_certificate_key sign.key enc.key;

proxy_ssl_ciphers "ECC-SM2-WITH-SM4-SM3:ECDHE-SM2-WITH-SM4-SM3:RSA";

proxy_pass https://backend:443;
}

s Important

Build Angie using the --with-ntls build option and link with NTLS-enabled SSL library

./configure --with-openssl=../Tongsuo-8.3.0 \
--with-openssl-opt=enable-ntls \
--with-ntls

proxy_ssl_password_file

Syntax proxy_ssl_password_file file;
Default —
Context http, server, location

Specifies a file with passphrases for secret keys where each passphrase is specified on a separate line.
Passphrases are tried in turn when loading the key.

proxy_ssl_protocols

Syntax proxy_ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1] [TLSv1.2] [TLSv1.3];
Default proxy_ssl_protocols TLSv1.2 TLSv1.3;
Context http, server, location

Changed in version 1.2.0: TLSv1.3 parameter added to default set.

Enables the specified protocols for requests to a proxied HTTPS server.

proxy_ssl_server_name

Syntax proxy_ssl_server_name on | off;
Default proxy_ssl_server_name off;
Context http, server, location

Enables or disables passing the server name set by the proxy_ssl_name directive via the Server Name
Indication TLS extension (SNI, RFC 6066) while establishing a connection with the proxied HTTPS
server.

3.2. References and Indexes 191

http://en.wikipedia.org/wiki/Server_Name_Indication
http://en.wikipedia.org/wiki/Server_Name_Indication
https://datatracker.ietf.org/doc/html/rfc6066.html

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxy_ssl_session_reuse

Syntax proxy_ssl_session_reuse on | off;
Default proxy_ssl_session_reuse on;
Context http, server, location

Determines whether SSL sessions can be reused when working with the proxied server. If the errors
"SSL3_GET_FINISHED:digest check failed" appear in the logs, try disabling session reuse.

proxy_ssl_trusted_certificate

Syntax proxy_ssl_trusted_certificate file;
Default —
Context http, server, location

Specifies a file with trusted CA certificates in the PEM format used to verify the certificate of the proxied
HTTPS server.

proxy_ssl_verify

Syntax proxy_ssl_verify on | off;
Default proxy_ssl_verify off;
Context http, server, location

Enables or disables verification of the proxied HTTPS server certificate.

proxy_ssl_verify_depth

Syntax proxy_ssl_verify_depth number ;
Default proxy_ssl_verify_depth 1;
Context http, server, location

Sets the verification depth in the proxied HTTPS server certificates chain.

proxy_store

Syntax proxy_store on | off | string ;
Default proxy_store off;
Context http, server, location

Enables saving of files to a disk.

on saves files with paths corresponding to the directives alias or root
off disables saving of files

The file name can be set explicitly using the string with variables:

proxy_store /data/www$original_uri;

3.2. References and Indexes 192

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

The modification time of files is set according to the received "Last-Modified" response header field.
The response is first written to a temporary file, and then the file is renamed. Temporary files and the
persistent store can be put on different file systems. However, be aware that in this case a file is copied
across two file systems instead of the cheap renaming operation. It is thus recommended that for any
given location both saved files and a directory holding temporary files, set by the proxy_temp_path
directive, are put on the same file system.

This directive can be used to create local copies of static unchangeable files, e.g.:

location /images/ {
root /data/www;
error_page 404 = /fetch$uri;

}

location /fetch/ {
internal;

proxy_pass http://backend/;
proxy_store on;
proxy_store_access user:rw group:rw all:r;
proxy_temp_path /data/temp;

alias /data/www/;
}

or like this:

location /images/ {
root /data/www;
error_page 404 = @fetch;

}

location @fetch {
internal;

proxy_pass http://backend;
proxy_store on;
proxy_store_access user:rw group:rw all:r;
proxy_temp_path /data/temp;

root /data/www;
}

proxy_store_access

Syntax proxy_store_access users:permissions ...;
Default proxy_store_access user:rw;
Context http, server, location

Sets access permissions for newly created files and directories, e.g.:

proxy_store_access user:rw group:rw all:r;

If any group or all access permissions are specified then user permissions may be omitted:

proxy_store_access group:rw all:r;

3.2. References and Indexes 193

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxy_temp_file_write_size

Syntax proxy_temp_file_write_size size;
Default proxy_temp_file_write_size 8k|16k;
Context http, server, location

Limits the size of data written to a temporary file at a time, when buffering of responses from the
proxied server to temporary files is enabled. By default, size is limited by two buffers set by the
proxy_buffer_size and proxy_buffers directives. The maximum size of a temporary file is set by the
proxy_max_temp_file_size directive.

proxy_temp_path

Syntax proxy_temp_path path [level1 [level2 [level3]]]`;
Default proxy_temp_path proxy_temp; (the path depends on the

--http-proxy-temp-path build option)
Context http, server, location

Defines a directory for storing temporary files with data received from proxied servers. Up to three-level
subdirectory hierarchy can be used underneath the specified directory. For example, in the following
configuration

proxy_temp_path /spool/angie/proxy_temp 1 2;

a temporary file might look like this:

/spool/angie/proxy_temp/7/45/00000123457

See also the use_temp_path parameter of the proxy_cache_path directive.

Built-in Variables

The http_proxy module supports built-in variables that can be used to compose headers using the
proxy_set_header directive:

$proxy_host

name and port of a proxied server as specified in the proxy_pass directive;

$proxy_port

port of a proxied server as specified in the proxy_pass directive, or the protocol's default port;

$proxy_add_x_forwarded_for

the "X-Forwarded-For" client request header field with the $remote_addr variable appended to it, sep-
arated by a comma. If the "X-Forwarded-For" field is not present in the client request header, the
$proxy_add_x_forwarded_for variable is equal to the $remote_addr variable.

Random Index

The module processes requests ending with the slash character (/) and picks a random file in a directory
to serve as an index file. The module is processed before the http_index module.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_random_index_module build option.

3.2. References and Indexes 194

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

In packages and images from our repos, the module is included in the build.

Configuration Example

location / {
random_index on;

}

Directives

random_index

Syntax random_index on | off;
Default random_index off;
Context location

Enables or disables module processing in a surrounding location.

RealIP

The module is used to change the client address and optional port to those sent in the specified header
field.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_realip_module build option.

In packages and images from our repos, the module is included in the build.

Configuration Example

set_real_ip_from 192.168.1.0/24;
set_real_ip_from 192.168.2.1;
set_real_ip_from 2001:0db8::/32;
real_ip_header X-Forwarded-For;
real_ip_recursive on;

Directives

set_real_ip_from

Syntax set_real_ip_from address | CIDR | unix:;
Default —
Context http, server, location

Defines trusted addresses that are known to send correct replacement addresses. If the special value
unix: is specified, all UNIX domain sockets will be trusted. Trusted addresses may also be specified
using a hostname.

real_ip_header

Syntax real_ip_header field | X-Real-IP | X-Forwarded-For | proxy_protocol;
Default real_ip_header X-Real-IP;
Context http, server, location

3.2. References and Indexes 195

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Defines the request header field whose value will be used to replace the client address.

The request header field value that contains an optional port is also used to replace the client port. The
address and port should be specified according to RFC 3986.

The proxy_protocol parameter changes the client address to the one from the PROXY protocol header.
The PROXY protocol must be previously enabled by setting the proxy_protocol parameter in the listen
directive.

real_ip_recursive

Syntax real_ip_recursive on | off;
Default real_ip_recursive off;
Context http, server, location

If recursive search is disabled, the original client address that matches one of the trusted addresses is
replaced by the last address sent in the request header field defined by the real_ip_header directive.
If recursive search is enabled, the original client address that matches one of the trusted addresses is
replaced by the last non-trusted address sent in the request header field.

Built-in Variables

$realip_remote_addr

keeps the original client address

$realip_remote_port

keeps the original client port

Referer

The module is used to block access to a site for requests with invalid values in the "Referer" header
field. It should be kept in mind that fabricating a request with an appropriate "Referer" field value is
quite easy, and so the intended purpose of this module is not to block such requests thoroughly but to
block the mass flow of requests sent by regular browsers. It should also be taken into consideration that
regular browsers may not send the "Referer" field even for valid requests.

Configuration Example

valid_referers none blocked server_names
.example.com example. www.example.org/galleries/
~\.google\.;

if ($invalid_referer) {
return 403;

}

Directives

referer_hash_bucket_size

Syntax referer_hash_bucket_size size;
Default referer_hash_bucket_size 64;
Context server, location

3.2. References and Indexes 196

https://datatracker.ietf.org/doc/html/rfc3986

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Sets the bucket size for the valid referers hash tables. The details of setting up hash tables are provided
in a separate document .

referer_hash_max_size

Syntax referer_hash_max_size size;
Default referer_hash_max_size 2048;
Context server, location

Sets the maximum size of the valid referers hash tables. The details of setting up hash tables are provided
in a separate document .

valid_referers

Syntax valid_referers none | blocked | server_names | string ...;
Default —
Context server, location

Specifies the "Referer" request header field values that will cause the built-in $invalid_referer variable to
be set to an empty string. Otherwise, the variable will be set to "1". Search for a match is case-insensitive.

Parameters can be as follows:

none the "Referer" field is missing in the request header;
blocked the "Referer" field is present in the request header, but its value has been deleted

by a firewall or proxy server; such values are strings that do not start with http:/
/ or https://;

server_names the "Referer" request header field contains one of the server names;
arbitrary
string

defines a server name and an optional URI prefix. A server name can have an "*"
at the beginning or end. During the checking, the server's port in the "Referer"
field is ignored;

regular
expression

the first symbol should be a "~". It should be noted that an expression will be
matched against the text starting after the http:// or https://.

Example:

valid_referers none blocked server_names
.example.com example. www.example.org/galleries/
~\.google\.;

Built-in Variables

$invalid_referer

Empty string, if the "Referer" request header field value is considered valid , otherwise "1".

Rewrite

The module is used to change request URI using PCRE regular expressions, return redirects, and con-
ditionally select configurations.

The break , if , return, rewrite and set directives are processed in the following order:

• the directives of this module specified on the server level are executed sequentially;

• repeatedly:

3.2. References and Indexes 197

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

– a location is searched based on a request URI;

– the directives of this module specified inside the found location are executed sequentially;

– the loop is repeated if a request URI was rewritten, but not more than 10 times.

Directives

break

Syntax break;
Default —
Context server, location, if

Stops processing the current set of http_rewrite directives.

If a directive is specified inside the location, further processing of the request continues in this location.

Example:

if ($slow) {
limit_rate 10k;
break;

}

if

Syntax if (condition) { ... }
Default —
Context server, location

The specified condition is evaluated. If true, this module directives specified inside the braces are
executed, and the request is assigned the configuration inside the if directive. Configurations inside the
if directives are inherited from the previous configuration level.

A condition may be any of the following:

• a variable name; false if the value of a variable is an empty string or "0";

• comparison of a variable with a string using the "=" and "!=" operators;

• matching of a variable against a regular expression using the "~" (for case-sensitive matching) and
"~*" (for case-insensitive matching) operators. Regular expressions can contain captures that are
made available for later reuse in the $1..$9 variables. Negative operators "!~" and "!~*" are also
available. If a regular expression includes the "}" or ";" characters, the whole expressions should
be enclosed in single or double quotes.

• checking of a file existence with the "-f" and "!-f" operators;

• checking of a directory existence with the "-d" and "!-d" operators;

• checking of a file, directory, or symbolic link existence with the "-e" and "!-e" operators;

• checking for an executable file with the "-x" and "!-x" operators.

Examples:

if ($http_user_agent ~ MSIE) {
rewrite ^(.*)$ /msie/$1 break;

}

if ($http_cookie ~* "id=([^;]+)(?:;|$)") {

3.2. References and Indexes 198

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

set $id $1;
}

if ($request_method = POST) {
return 405;

}

if ($slow) {
limit_rate 10k;

}

if ($invalid_referer) {
return 403;

}

ò Note

The value of the $invalid_referer built-in variable is set by the valid_referers directive.

return

Syntax return code [text];
return code URL;
return URL;

Default —
Context server, location, if

Stops processing and returns the specified code to a client. The non-standard code 444 closes a connection
without sending a response header.

It is possible to specify either a redirect URL (for codes 301, 302, 303, 307, and 308) or the response body
text (for other codes). A response body text and redirect URL can contain variables. As a special case, a
redirect URL can be specified as a URI local to this server, in which case the full redirect URL is formed
according to the request scheme ($scheme) and the server_name_in_redirect and port_in_redirect
directives.

In addition, a URL for temporary redirect with the code 302 can be specified as the sole parameter.
Such a parameter should start with the http://, https://, or "$scheme" string. A URL can contain
variables.

See also the error_page directive.

rewrite

Syntax rewrite regex replacement [flag];
Default —
Context server, location, if

If the specified regular expression matches a request URI, URI is changed as specified in the replacement
string. The rewrite directives are executed sequentially in order of their appearance in the configuration
file. It is possible to terminate further processing of the directives using flags. If a replacement string
starts with http://, https://, or "$scheme", the processing stops and the redirect is returned to a
client.

An optional flag parameter can be one of:

3.2. References and Indexes 199

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

last stops processing the current set of http_rewrite directives and starts a search for
a new location matching the changed URI;

break stops processing the current set of http_rewrite directives as with the break di-
rective;

redirect returns a temporary redirect with the 302 code; used if a replacement string
does not start with http://, https:// or "$scheme";

permanent returns a permanent redirect with the 301 code.

The full redirect URL is formed according to the request scheme ($scheme) and the
server_name_in_redirect and port_in_redirect directives.

Example:

server {
...

rewrite ^(/download/.*)/media/(.*)\..*$ $1/mp3/$2.mp3 last;
rewrite ^(/download/.*)/audio/(.*)\..*$ $1/mp3/$2.ra last;
return 403;

...
}

But if these directives are put inside the "/download/" location, the last flag should be replaced by
break, or otherwise Angie will make 10 cycles and return the 500 error:

location /download/ {
rewrite ^(/download/.*)/media/(.*)\..*$ $1/mp3/$2.mp3 break;
rewrite ^(/download/.*)/audio/(.*)\..*$ $1/mp3/$2.ra break;
return 403;

}

If a replacement string includes the new request arguments, the previous request arguments are ap-
pended after them. If this is undesired, putting a question mark at the end of a replacement string avoids
having them appended, for example:

rewrite ^/users/(.*)$ /show?user=$1? last;

If a regular expression includes the "}" or ";" characters, the whole expressions should be enclosed in
single or double quotes.

rewrite_log

Syntax rewrite_log on | off;
Default rewrite_log off;
Context http, server, location, if

Enables or disables logging of http_rewrite module directives processing results into the error_log at
the notice level.

set

Syntax set $variable value;
Default —
Context server, location, if

Sets a value for the specified variable. The value can contain text, variables, and their combination.

3.2. References and Indexes 200

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

uninitialized_variable_warn

Syntax uninitialized_variable_warn on | off;
Default uninitialized_variable_warn on;
Context http, server, location, if

Controls whether warnings about uninitialized variables are logged.

Internal Implementation

The http_rewrite module directives are compiled at the configuration stage into internal instructions
that are interpreted during request processing. An interpreter is a simple virtual stack machine.

For example, the directives

location /download/ {
if ($forbidden) {

return 403;
}

if ($slow) {
limit_rate 10k;

}

rewrite ^/(download/.*)/media/(.*)\..*$ /$1/mp3/$2.mp3 break;
}

will be translated into these instructions:

variable $forbidden
check against zero

return 403
end of code

variable $slow
check against zero
match of regular expression
copy "/"
copy $1
copy "/mp3/"
copy $2
copy ".mp3"
end of regular expression
end of code

Note that there are no instructions for the limit_rate directive above as it is unrelated to the http_rewrite
module. A separate configuration is created for the if block. If the condition holds true, a request is
assigned this configuration where limit_rate equals to 10k.

The directive

rewrite ^/(download/.*)/media/(.*)\..*$ /$1/mp3/$2.mp3 break;

can be made smaller by one instruction if the first slash in the regular expression is put inside the
parentheses:

rewrite ^(/download/.*)/media/(.*)\..*$ $1/mp3/$2.mp3 break;

The corresponding instructions will then look like this:

3.2. References and Indexes 201

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

match of regular expression
copy $1
copy "/mp3/"
copy $2
copy ".mp3"
end of regular expression
end of code

SCGI

Allows passing requests to an SCGI server.

Configuration Example

location / {
include scgi_params;
scgi_pass localhost:9000;

}

Directives

scgi_bind

Syntax scgi_bind address [transparent] | off;
Default —
Context http, server, location

Makes outgoing connections to an SCGI server originate from the specified local IP address with an
optional port. Parameter value can contain variables. The special value off cancels the effect of the
scgi_bind directive inherited from the previous configuration level, which allows the system to auto-assign
the local IP address and port.

The transparent parameter allows outgoing connections to an SCGI server originate from a non-local
IP address, for example, from a real IP address of a client:

scgi_bind $remote_addr transparent;

In order for this parameter to work, it is usually necessary to run Angie worker processes with the
superuser privileges. On Linux it is not required as if the transparent parameter is specified, worker
processes inherit the CAP_NET_RAW capability from the master process.

s Important

It is necessary to configure kernel routing table to intercept network traffic from the SCGI server.

scgi_buffer_size

Syntax scgi_buffer_size size;
Default scgi_buffer_size 4k|8k;
Context http, server, location

Sets the size of the buffer used for reading the first part of the response received from the SCGI server.
This part usually contains a small response header. By default, the buffer size is equal to one memory

3.2. References and Indexes 202

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

page. This is either 4K or 8K, depending on a platform. It can be made smaller, however.

scgi_buffering

Syntax scgi_buffering on | off;
Default scgi_buffering on;
Context http, server, location

Enables or disables buffering of responses from the SCGI server.

on Angie receives a response from the SCGI server as soon as possible, saving
it into the buffers set by the scgi_buffer_size and scgi_buffers directives. If
the whole response does not fit into memory, a part of it can be saved to
a temporary file on the disk. Writing to temporary files is controlled by the
scgi_max_temp_file_size and scgi_temp_file_write_size directives.

off The response is passed to a client synchronously, immediately as it is received.
Angie will not try to read the whole response from the SCGI server. The maxi-
mum size of the data that Angie can receive from the server at a time is set by
the scgi_buffer_size directive.

Buffering can also be enabled or disabled by passing "yes" or "no" in the "X-Accel-Buffering" response
header field. This capability can be disabled using the scgi_ignore_headers directive.

scgi_buffers

Syntax scgi_buffers number size;
Default scgi_buffers 8 4k | 8k;
Context http, server, location

Sets the number and size of the buffers used for reading a response from the SCGI server, for a single
connection.

By default, the buffer size is equal to one memory page. This is either 4K or 8K, depending on a platform.

scgi_busy_buffers_size

Syntax scgi_busy_buffers_size size;
Default scgi_busy_buffers_size 8k | 16k;
Context http, server, location

When buffering of responses from the SCGI server is enabled, limits the total size of buffers that can be
busy sending a response to the client while the response is not yet fully read. In the meantime, the rest
of the buffers can be used for reading the response and, if needed, buffering part of the response to a
temporary file.

By default, size is limited by the size of two buffers set by the scgi_buffer_size and scgi_buffers directives.

scgi_cache

Syntax scgi_cache zone | off;
Default scgi_cache off;
Context http, server, location

3.2. References and Indexes 203

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Defines a shared memory zone used for caching. The same zone can be used in several places. Parameter
value can contain variables.

off disables caching inherited from the previous configuration level.

scgi_cache_background_update

Syntax scgi_cache_background_update on | off;
Default scgi_cache_background_update off;
Context http, server, location

Allows starting a background subrequest to update an expired cache item, while a stale cached response
is returned to the client.

. Attention

Note that it is necessary to allow the usage of a stale cached response when it is being updated.

scgi_cache_bypass

Syntax scgi_cache_bypass ...;
Default —
Context http, server, location

Defines conditions under which the response will not be taken from a cache. If at least one value of the
string parameters is not empty and is not equal to "0" then the response will not be taken from the
cache:

scgi_cache_bypass $cookie_nocache $arg_nocache$arg_comment;
scgi_cache_bypass $http_pragma $http_authorization;

Can be used along with the scgi_no_cache directive.

scgi_cache_key

Syntax scgi_cache_key string ;
Default —
Context http, server, location

Defines a key for caching, for example

scgi_cache_key localhost:9000$request_uri;

scgi_cache_lock

Syntax scgi_cache_lock on | off;
Default scgi_cache_lock off;
Context http, server, location

3.2. References and Indexes 204

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

When enabled, only one request at a time will be allowed to populate a new cache element identified
according to the scgi_cache_key directive by passing a request to an SCGI server. Other requests of
the same cache element will either wait for a response to appear in the cache or the cache lock for this
element to be released, up to the time set by the scgi_cache_lock_timeout directive.

scgi_cache_lock_age

Syntax scgi_cache_lock_age time;
Default scgi_cache_lock_age 5s;
Context http, server, location

If the last request passed to the SCGI server for populating a new cache element has not completed for
the specified time, one more request may be passed to the SCGI server.

scgi_cache_lock_timeout

Syntax scgi_cache_lock_timeout time;
Default scgi_cache_lock_timeout 5s;
Context http, server, location

Sets a timeout for scgi_cache_lock . When the time expires, the request will be passed to the SCGI
server, however, the response will not be cached.

scgi_cache_max_range_offset

Syntax scgi_cache_max_range_offset number ;
Default —
Context http, server, location

Sets an offset in bytes for byte-range requests. If the range is beyond the offset, the range request will
be passed to the SCGI server and the response will not be cached.

scgi_cache_methods

Syntax scgi_cache_methods GET | HEAD | POST ...;
Default scgi_cache_methods GET HEAD;
Context http, server, location

If the client request method is listed in this directive then the response will be cached. "GET" and
"HEAD" methods are always added to the list, though it is recommended to specify them explicitly. See
also the scgi_no_cache directive.

scgi_cache_min_uses

Syntax scgi_cache_min_uses number ;
Default scgi_cache_min_uses 1;
Context http, server, location

Sets the number of requests after which the response will be cached.

3.2. References and Indexes 205

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

scgi_cache_path

Syntax scgi_cache_path path [levels=levels] [use_temp_path=on | off]
keys_zone=name:size [inactive=time] [max_size=size] [min_free=size]
[manager_files=number] [manager_sleep=time] [manager_threshold=time]
[loader_files=number] [loader_sleep=time] [loader_threshold=time];

Default —
Context http

Sets the path and other parameters of a cache. Cache data are stored in files. The file name in a cache
is a result of applying the MD5 function to the cache key .

The levels parameter defines hierarchy levels of a cache: from 1 to 3, each level accepts values 1 or 2.
For example, in the following configuration:

scgi_cache_path /data/angie/cache levels=1:2 keys_zone=one:10m;

file names in a cache will look like this:

/data/angie/cache/c/29/b7f54b2df7773722d382f4809d65029c

A cached response is first written to a temporary file, and then the file is renamed. Temporary files and
the cache can be put on different file systems. However, be aware that in this case a file is copied across
two file systems instead of the cheap renaming operation. It is thus recommended that for any given
location both cache and a directory holding temporary files are put on the same file system.

The directory for temporary files is set based on the use_temp_path parameter.

on If this parameter is omitted or set to the value on, the directory set by the
scgi_temp_path directive for the given location will be used.

off Temporary files will be put directly in the cache directory.

In addition, all active keys and information about data are stored in a shared memory zone, whose name
and size are configured by the keys_zone parameter. One megabyte zone can store about 8 thousand
keys.

Cached data that are not accessed during the time specified by the inactive parameter get removed
from the cache regardless of their freshness.

By default, inactive is set to 10 minutes.

A special cache manager process monitors the maximum cache size and the minimum amount of free
space on the file system with cache and when the size is exceeded or there is not enough free space, it
removes the least recently used data. The data is removed in iterations.

max_size maximum cache size
min_free minimum amount of free space on the file system with cache
manager_files limits the number of items to be deleted during one iteration

By default, 100
manager_threshold limits the duration of one iteration

By default, 200 milliseconds
manager_sleep configures a pause between iterations

By default, 50 milliseconds

A minute after Angie starts, the special cache loader process is activated. It loads information about
previously cached data stored on file system into a cache zone. The loading is also done in iterations.

3.2. References and Indexes 206

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

loader_files limits the number of items to load during one iteration
By default, 100

loader_threshold limits the duration of one iteration
By default, 200 milliseconds

loader_sleep configures a pause between iterations
By default, 50 milliseconds

scgi_cache_revalidate

Syntax scgi_cache_revalidate on | off;
Default scgi_cache_revalidate off;
Context http, server, location

Enables revalidation of expired cache items using conditional requests with the "If-Modified-Since" and
"If-None-Match" header fields.

scgi_cache_use_stale

Syntax scgi_cache_use_stale error | timeout | invalid_header | updating | http_500
| http_502 | http_503 | http_504 | http_403 | http_404 | http_429 | off ...;

Default scgi_cache_use_stale off;
Context http, server, location

Determines in which cases a stale cached response can be used during communication with the SCGI
server. The directive's parameters match the parameters of the scgi_next_upstream directive.

error permits using a stale cached response if a SCGI server to process a request cannot
be selected.

updating additional parameter, permits using a stale cached response if it is currently being
updated. This allows minimizing the number of accesses to SCGI servers when
updating cached data.

Using a stale cached response can also be enabled directly in the response header for a specified number
of seconds after the response became stale:

• The stale-while-revalidate extension of the "Cache-Control" header field permits using a stale
cached response if it is currently being updated.

• The stale-if-error extension of the "Cache-Control" header field permits using a stale cached re-
sponse in case of an error.

ò Note

This has lower priority than using the directive parameters.

To minimize the number of accesses to SCGI servers when populating a new cache element, the
scgi_cache_lock directive can be used.

3.2. References and Indexes 207

https://datatracker.ietf.org/doc/html/rfc5861#section-3
https://datatracker.ietf.org/doc/html/rfc5861#section-4

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

scgi_cache_valid

Syntax scgi_cache_valid [code ...] time;
Default —
Context http, server, location

Sets caching time for different response codes. For example, the following directives

scgi_cache_valid 200 302 10m;
scgi_cache_valid 404 1m;

set 10 minutes of caching for responses with codes 200 and 302 and 1 minute for responses with code
404.

If only caching time is specified

scgi_cache_valid 5m;

then only 200, 301, and 302 responses are cached.

In addition, the any parameter can be specified to cache any responses:

scgi_cache_valid 200 302 10m;
scgi_cache_valid 301 1h;
scgi_cache_valid any 1m;

ò Note

Parameters of caching can also be set directly in the response header. This has higher priority than
setting of caching time using the directive.

• The "X-Accel-Expires" header field sets caching time of a response in seconds. The zero value
disables caching for a response. If the value starts with the @ prefix, it sets an absolute time in
seconds since Epoch, up to which the response may be cached.

• If the header does not include the "X-Accel-Expires" field, parameters of caching may be set in the
header fields "Expires" or "Cache-Control".

• If the header includes the "Set-Cookie" field, such a response will not be cached.

• If the header includes the "Vary" field with the special value "*", such a response will not be
cached. If the header includes the "Vary" field with another value, such a response will be cached
taking into account the corresponding request header fields.

Processing of one or more of these response header fields can be disabled using the scgi_ignore_headers
directive.

scgi_connect_timeout

Syntax scgi_connect_timeout time;
Default scgi_connect_timeout 60s;
Context http, server, location

Defines a timeout for establishing a connection with a SCGI server. It should be noted that this timeout
cannot usually exceed 75 seconds.

3.2. References and Indexes 208

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

scgi_connection_drop

Syntax scgi_connection_drop time | on | off;
Default scgi_connection_drop off;
Context http, server, location

Enables termination of all connections to the proxied server after it has been removed from the group or
marked as permanently unavailable by a reresolve process or the API command DELETE.

A connection is terminated when the next read or write event is processed for either the client or the
proxied server.

Setting time enables a connection termination timeout ; with on set, connections are dropped immediately.

scgi_force_ranges

Syntax scgi_force_ranges on | off;
Default scgi_force_ranges off;
Context http, server, location

Enables byte-range support for both cached and uncached responses from the SCGI server regardless of
the "Accept-Ranges" field in these responses.

scgi_hide_header

Syntax scgi_hide_header field ;
Default —
Context http, server, location

By default, Angie does not pass the header fields Status and X-Accel-... from the response of a SCGI
server to a client. The scgi_hide_header directive sets additional fields that will not be passed. If, on
the contrary, the passing of fields needs to be permitted, the scgi_pass_header directive can be used.

scgi_ignore_client_abort

Syntax scgi_ignore_client_abort on | off;
Default scgi_ignore_client_abort off;
Context http, server, location

Determines whether the connection with a SCGI server should be closed when a client closes the con-
nection without waiting for a response.

scgi_ignore_headers

Syntax scgi_ignore_headers field ...;
Default —
Context http, server, location

Disables processing of certain response header fields from the SCGI server. The following fields can be
ignored: "X-Accel-Redirect", "X-Accel-Expires", "X-Accel-Limit-Rate", "X-Accel-Buffering", "X-Accel-
Charset", "Expires", "Cache-Control", "Set-Cookie", and "Vary".

If not disabled, processing of these header fields has the following effect:

3.2. References and Indexes 209

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

• "X-Accel-Expires", "Expires", "Cache-Control", "Set-Cookie" and "Vary" set the parameters of
response caching ;

• "X-Accel-Redirect" performs an internal redirect to the specified URI;

• "X-Accel-Limit-Rate" sets the rate limit for transmission of a response to a client;

• "X-Accel-Buffering" enables or disables buffering of a response;

• "X-Accel-Charset" sets the desired charset of a response.

scgi_intercept_errors

Syntax scgi_intercept_errors on | off;
Default scgi_intercept_errors off;
Context http, server, location

Determines whether SCGI server responses with codes greater than or equal to 300 should be passed to
a client or be intercepted and redirected to Angie for processing with the error_page directive.

scgi_limit_rate

Syntax scgi_limit_rate rate;
Default scgi_limit_rate 0;
Context http, server, location

Limits the speed of reading the response from the SCGI server. The rate is specified in bytes per second
and can contain variables.

0 disables rate limiting

ò Note

The limit is set per a request, and so if Angie simultaneously opens two connections to the SCGI
server, the overall rate will be twice as much as the specified limit. The limitation works only if
buffering of responses from the SCGI server is enabled.

scgi_max_temp_file_size

Syntax scgi_max_temp_file_size size;
Default scgi_max_temp_file_size 1024m;
Context http, server, location

When buffering of responses from the SCGI server is enabled, and the whole response does not fit into
the buffers set by the scgi_buffer_size and scgi_buffers directives, a part of the response can be saved
to a temporary file. This directive sets the maximum size of the temporary file. The size of data written
to the temporary file at a time is set by the scgi_temp_file_write_size directive.

0 disables buffering of responses to temporary files

3.2. References and Indexes 210

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ò Note

This restriction does not apply to responses that will be cached or stored on disk .

scgi_next_upstream

Syntax scgi_next_upstream error | timeout | invalid_header | http_500 | http_503 |
http_403 | http_404 | http_429 | non_idempotent | off ...;

Default scgi_next_upstream error timeout;
Context http, server, location

Specifies in which cases a request should be passed to the next server:

error an error occurred while establishing a connection with the server, passing a re-
quest to it, or reading the response header;

timeout a timeout has occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

invalid_header a server returned an empty or invalid response;
http_500 a server returned a response with the code 500;
http_503 a server returned a response with the code 503;
http_403 a server returned a response with the code 403;
http_404 a server returned a response with the code 404;
http_429 a server returned a response with the code 429;
non_idempotent normally, requests with a non-idempotent method (POST, LOCK, PATCH) are not

passed to the next server if a request has been sent to an upstream server; enabling
this option explicitly allows retrying such requests;

off disables passing a request to the next server.

ò Note

One should bear in mind that passing a request to the next server is only possible if nothing has
been sent to a client yet. That is, if an error or timeout occurs in the middle of the transferring of a
response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt of communication with a server.

error
timeout
invalid_header

always considered unsuccessful attempts, even if they are not specified in the
directive

http_500
http_503
http_429

considered unsuccessful attempts only if they are specified in the directive

http_403
http_404

never considered unsuccessful attempts

Passing a request to the next server can be limited by the number of tries and by time.

3.2. References and Indexes 211

https://datatracker.ietf.org/doc/html/rfc7231#section-4-2-2

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

scgi_next_upstream_timeout

Syntax scgi_next_upstream_timeout time;
Default scgi_next_upstream_timeout 0;
Context http, server, location

Limits the time during which a request can be passed to the next server.

0 turns off this limitation

scgi_next_upstream_tries

Syntax scgi_next_upstream_tries number ;
Default scgi_next_upstream_tries 0;
Context http, server, location

Limits the number of possible tries for passing a request to the next server.

0 turns off this limitation

scgi_no_cache

Syntax scgi_no_cache string ...;
Default —
Context http, server, location

Defines conditions under which the response will not be saved to a cache. If at least one value of the
string parameters is not empty and is not equal to "0" then the response will not be saved:

scgi_no_cache $cookie_nocache $arg_nocache$arg_comment;
scgi_no_cache $http_pragma $http_authorization;

Can be used along with the scgi_cache_bypass directive.

scgi_param

Syntax scgi_param parameter value [if_not_empty];
Default —
Context http, server, location

Sets a parameter that should be passed to the SCGI server. The value can contain text, variables, and
their combination. These directives are inherited from the previous configuration level if and only if
there are no scgi_param directives defined on the current level.

Standard CGI environment variables should be provided as SCGI headers, see the scgi_params file
provided in the distribution:

location / {
include scgi_params;

...
}

3.2. References and Indexes 212

https://datatracker.ietf.org/doc/html/rfc3875#section-4.1

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

If the directive is specified with if_not_empty then such a parameter will be passed to the server only
if its value is not empty:

scgi_param HTTPS $https if_not_empty;

scgi_pass

Syntax scgi_pass uri ;
Default —
Context location, if in location

Sets the address of an SCGI server. The address can be specified as a domain name or IP address, and
an optional port:

scgi_pass localhost:9000;

or as a UNIX domain socket path:

scgi_pass unix:/tmp/scgi.socket;

If a domain name resolves to several addresses, all of them will be used in a round-robin fashion. In
addition, an address can be specified as a server group.

Parameter value can contain variables. In this case, if an address is specified as a domain name, the
name is searched among the described server groups, and, if not found, is determined using a resolver .

scgi_pass_header

Syntax scgi_pass_header field ...;
Default —
Context http, server, location

Permits passing otherwise disabled header fields from a SCGI server to a client.

scgi_pass_request_body

Syntax scgi_pass_request_body on | off;
Default scgi_pass_request_body on;
Context http, server, location

Indicates whether the original request body is passed to the SCGI server. See also the
scgi_pass_request_headers directive.

scgi_pass_request_headers

Syntax scgi_pass_request_headers on | off;
Default scgi_pass_request_headers on;
Context http, server, location

Indicates whether the header fields of the original request are passed to the SCGI server. See also the
scgi_pass_request_body directive.

3.2. References and Indexes 213

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

scgi_read_timeout

Syntax scgi_read_timeout time;
Default scgi_read_timeout 60s;
Context http, server, location

Defines a timeout for reading a response from the SCGI server. The timeout is set only between two
successive read operations, not for the transmission of the whole response. If the SCGI server does not
transmit anything within this time, the connection is closed.

scgi_request_buffering

Syntax scgi_request_buffering on | off;
Default scgi_request_buffering on;
Context http, server, location

Enables or disables buffering of a client request body.

on the entire request body is read from the client before sending the request to a
SCGI server.

off the request body is sent to the SCGI server immediately as it is received. In this
case, the request cannot be passed to the next server if Angie already started
sending the request body.

When HTTP/1.1 chunked transfer encoding is used to send the original request body, the request body
will be buffered regardless of the directive value.

scgi_send_timeout

Syntax scgi_send_timeout time;
Default scgi_send_timeout 60s;
Context http, server, location

Sets a timeout for transmitting a request to the SCGI server. The timeout is set only between two
successive write operations, not for the transmission of the whole request. If the SCGI server does not
receive anything within this time, the connection is closed.

scgi_socket_keepalive

Syntax scgi_socket_keepalive on | off;
Default scgi_socket_keepalive off;
Context http, server, location

Configures the "TCP keepalive" behavior for outgoing connections to a SCGI server.

"" By default, the operating system's settings are in effect for the socket.
on The SO_KEEPALIVE socket option is turned on for the socket.

3.2. References and Indexes 214

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

scgi_store

Syntax scgi_store on | off | string ;
Default scgi_store off;
Context http, server, location

Enables saving of files to a disk.

on saves files with paths corresponding to the directives alias or root
off disables saving of files

The file name can be set explicitly using the string with variables:

scgi_store /data/www$original_uri;

The modification time of files is set according to the received "Last-Modified" response header field.
The response is first written to a temporary file, and then the file is renamed. Temporary files and
the persistent store can be put on different file systems. However, be aware that in this case a file is
copied across two file systems instead of the cheap renaming operation. It is thus recommended that for
any given location both saved files and a directory holding temporary files, set by the scgi_temp_path
directive, are put on the same file system.

This directive can be used to create local copies of static unchangeable files, e.g.:

location /images/ {
root /data/www;
error_page 404 = /fetch$uri;

}

location /fetch/ {
internal;

scgi_pass backend:9000;
...

scgi_store on;
scgi_store_access user:rw group:rw all:r;
scgi_temp_path /data/temp;

alias /data/www/;
}

scgi_store_access

Syntax scgi_store_access users:permissions ...;
Default scgi_store_access user:rw;
Context http, server, location

Sets access permissions for newly created files and directories, e.g.:

scgi_store_access user:rw group:rw all:r;

If any group or all access permissions are specified then user permissions may be omitted:

3.2. References and Indexes 215

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

scgi_store_access group:rw all:r;

scgi_temp_file_write_size

Syntax scgi_temp_file_write_size size;
Default scgi_temp_file_write_size 8k|16k;
Context http, server, location

Limits the size of data written to a temporary file at a time, when buffering of responses from the SCGI
server to temporary files is enabled. By default, size is limited by two buffers set by the scgi_buffer_size
and scgi_buffers directives. The maximum size of a temporary file is set by the scgi_max_temp_file_size
directive.

scgi_temp_path

Syntax scgi_temp_path path [level1 [level2 [level3]]]`;
Default scgi_temp_path scgi_temp; (the path depends on the --http-scgi-temp-path

build option)
Context http, server, location

Defines a directory for storing temporary files with data received from SCGI servers. Up to three-level
subdirectory hierarchy can be used underneath the specified directory. For example, in the following
configuration

scgi_temp_path /spool/angie/scgi_temp 1 2;

a temporary file might look like this:

/spool/angie/scgi_temp/7/45/00000123457

See also the use_temp_path parameter of the scgi_cache_path directive.

Secure Link

The module allows checking authenticity of requested links, protecting resources from unauthorized
access, and limiting link lifetime.

The authenticity of a requested link is verified by comparing the checksum value passed in a request with
the value computed for the request. If a link has a limited lifetime and the time has expired, the link is
considered outdated. The status of these checks is made available in the $secure_link variable.

The module implements two alternative operation modes. The first mode is enabled by the se-
cure_link_secret directive and allows checking authenticity of requested links and protecting them from
unauthorized access. The second mode is enabled by the secure_link and secure_link_md5 directives
and also allows limiting link lifetime.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_secure_link_module build option.

In packages and images from our repos, the module is included in the build.

Directives

3.2. References and Indexes 216

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

secure_link

Syntax secure_link expression;
Default —
Context http, server, location

Defines a string with variables from which the checksum value and lifetime of a link will be extracted.

Variables used in an expression are usually associated with a request; see example below.

The checksum value extracted from the string is compared with the MD5 hash value of the expression
defined by the secure_link_md5 directive.

If the checksums do not match, the $secure_link variable is set to an empty string. If the checksums
match, the link lifetime is checked.

If the link has a limited lifetime and the time has expired, the $secure_link variable is set to 0. Otherwise,
it is set to 1. The MD5 hash value passed in a request is encoded in base64url.

If a link has a limited lifetime, the expiration time is set in seconds since Epoch (January 1, 1970 00:00:00
GMT). The value is specified in the expression after the MD5 hash, and is separated by a comma. The
expiration time passed in a request is available through the $secure_link_expires variable for use in the
secure_link_md5 directive. If the expiration time is not specified, a link has unlimited lifetime.

secure_link_md5

Syntax secure_link_md5 expression;
Default —
Context http, server, location

Defines an expression for which the MD5 hash value will be computed and compared with the value
passed in a request.

The expression should contain the secured part of a link (resource) and a secret ingredient. If the link
has a limited lifetime, the expression should also contain $secure_link_expires.

To prevent unauthorized access, the expression may contain some information about the client, such as
its address and browser version.

Example:

location /s/ {
secure_link $arg_md5,$arg_expires;
secure_link_md5 "$secure_link_expires$uri$remote_addr secret";

if ($secure_link = "") {
return 403;

}

if ($secure_link = "0") {
return 410;

}

...
}

The "/s/link?md5=_e4Nc3iduzkWRm01TBBNYw&expires=2147483647" link restricts access to
"/s/link" for the client with the IP address 127.0.0.1. The link also has limited lifetime until January
19, 2038 (GMT).

3.2. References and Indexes 217

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

On UNIX, the md5 request argument value can be obtained as:

echo -n '2147483647/s/link127.0.0.1 secret' | \
openssl md5 -binary | openssl base64 | tr +/ -_ | tr -d =

secure_link_secret

Syntax secure_link_secret word ;
Default —
Context location

Defines a secret word used to check authenticity of requested links.

The full URI of a requested link looks as follows:

/prefix/hash/link

where hash is a hexadecimal representation of the MD5 hash computed for the concatenation of the link
and secret word, and prefix is an arbitrary string without slashes.

If the requested link passes the authenticity check, the $secure_link variable is set to the link extracted
from the request URI. Otherwise, the $secure_link variable is set to an empty string.

Example:

location /p/ {
secure_link_secret secret;

if ($secure_link = "") {
return 403;

}

rewrite ^ /secure/$secure_link;
}

location /secure/ {
internal;

}

A request of "/p/5e814704a28d9bc1914ff19fa0c4a00a/link" will be internally redirected to "/se-
cure/link".

On UNIX, the hash value for this example can be obtained as:

echo -n 'linksecret' | openssl md5 -hex

Built-in Variables

$secure_link

The status of a link check. The specific value depends on the selected operation mode.

$secure_link_expires

The lifetime of a link passed in a request; intended to be used only in the secure_link_md5 directive.

3.2. References and Indexes 218

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Slice

The module is a filter that splits a request into subrequests, each returning a certain range of response.
The filter provides more effective caching of large responses.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_slice_module build option.

In packages and images from our repos, the module is included in the build.

Configuration Example

location / {
slice 1m;
proxy_cache cache;
proxy_cache_key uriis_args$args$slice_range;
proxy_set_header Range $slice_range;
proxy_cache_valid 200 206 1h;
proxy_pass http://localhost:8000;

}

In this example, the response is split into 1-megabyte cacheable slices.

Directives

slice

Syntax slice size;
Default slice 0;
Context http, server, location

Sets the size of the slice. The zero value disables splitting responses into slices.

. Warning

Note that a too low value may result in excessive memory usage and opening a large number of files.

In order for a subrequest to return the required range, the $slice_range variable should be passed to the
proxied server as the "Range" request header field. If caching is enabled, $slice_range should be added
to the cache key and caching of responses with 206 status code should be enabled .

Built-in Variables

$slice_range

The current slice range in HTTP byte range format, for example, bytes=0-1048575.

Split Clients

The module generates variables for A/B testing, canary releases, and other scenarios that direct a certain
percentage of clients to one server or configuration while routing the rest elsewhere.

3.2. References and Indexes 219

https://datatracker.ietf.org/doc/html/rfc7233#section-2.1

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Configuration Example

http {
split_clients "${remote_addr}AAA" $variant {

0.5% .one;
2.0% .two;
* "";

}

server {
location / {

index index${variant}.html;

Directives

split_clients

Syntax split_clients string $variable { ... }
Default —
Context http

Creates a $variable by hashing the string ; variables in the string are substituted, the result is hashed,
then the hash value is used to select the string value of the $variable.

The hash function uses MurmurHash2 (32-bit), and its entire value range (0 to 4294967295) is mapped
to buckets in order of appearance; the percentages determine the size of the buckets. A wildcard (*)
may occur last; hashes that don't fall into other buckets are mapped to its assigned value.

Example:

split_clients "${remote_addr}AAA" $variant {
0.5% .one;
2.0% .two;
* "";

}

Here, after substitution in the $remote_addr AAA string, the hash values are distributed as follows:

• values from 0 to 21474835 (0.5%) yield .one;

• values from 21474836 to 107374180 (2%) yield .two;

• values from 107374181 to 4294967295 (all others) yield "" (empty string).

SSI

The module is a filter that processes SSI (Server Side Includes) commands in responses passing through
it.

Configuration Example

location / {
ssi on;

...
}

3.2. References and Indexes 220

https://en.wikipedia.org/wiki/MurmurHash#MurmurHash2

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Directives

ssi

Syntax ssi on | off;
Default ssi off;
Context http, server, location, if in location

Enables or disables processing of SSI commands in responses.

ssi_last_modified

Syntax ssi_last_modified on | off;
Default ssi_last_modified off;
Context http, server, location

Allows preserving the "Last-Modified" header field from the original response during SSI processing to
facilitate response caching.

By default, the header field is removed as contents of the response are modified during processing and
may contain dynamically generated elements or parts that are changed independently of the original
response.

ssi_min_file_chunk

Syntax ssi_min_file_chunk size;
Default ssi_min_file_chunk 1k;
Context http, server, location

Sets the minimum size for parts of a response stored on disk, starting from which it makes sense to send
them using sendfile.

ssi_silent_errors

Syntax ssi_silent_errors on | off;
Default ssi_silent_errors off;
Context http, server, location

If enabled, suppresses the output of the "[an error occurred while processing the directive]" string if an
error occurred during SSI processing.

ssi_types

Syntax ssi_types mime-type ...;
Default ssi_types text/html;
Context http, server, location

Enables processing of SSI commands in responses with the specified MIME types in addition to text/
html. The special value "*" matches any MIME type.

3.2. References and Indexes 221

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssi_value_length

Syntax ssi_value_length length;
Default ssi_value_length 256;
Context http, server, location

Sets the maximum length of parameter values in SSI commands.

SSI Commands

SSI commands have the following generic format:

<!--# command parameter1=value1 parameter2=value2 ... -->

The following commands are supported:

block

Defines a block that can be used as a stub in the include command. The block can contain other SSI
commands. The command has the following parameter:

name

block name.

Example:

<!--# block name="one" -->
stub
<!--# endblock -->

config

Sets some parameters used during SSI processing, namely:

errmsg

a string that is output if an error occurs during SSI processing. By default, the following string is output:

`[an error occurred while processing the directive]`

timefmt

a format string passed to the strftime() function used to output date and time. By default, the
following format is used:

`"%A, %d-%b-%Y %H:%M:%S %Z"`

The "%s" format is suitable to output time in seconds.

echo

Outputs the value of a variable. The command has the following parameters:

3.2. References and Indexes 222

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

var

the variable name.

encoding

the encoding method. Possible values include none, url, and entity. By default, entity is used.

default

a non-standard parameter that sets a string to be output if a variable is undefined. By default, (none)
is output.

The command

<!--# echo var="name" default="no" -->

replaces the following sequence of commands:

<!--# if expr="$name" --> <!--# echo var="name" --> <!--#
else --> no<!--# endif -->

if

Performs a conditional inclusion. The following commands are supported:

<!--# if expr="..." -->
...
<!--# elif expr="..." -->
...
<!--# else -->
...
<!--# endif -->

Only one level of nesting is currently supported. The command has the following parameter:

expr

expression. An expression can be:

• variable existence check:

<!--# if expr="$name" -->

• comparison of a variable with a text:

<!--# if expr="$name = text" -->
<!--# if expr="$name != text" -->

• comparison of a variable with a regular expression:

<!--# if expr="$name = /text/" -->
<!--# if expr="$name != /text/" -->

If a text contains variables, their values are substituted. A regular expression can contain positional and
named captures that can later be used through variables, for example:

<!--# if expr="$name = /(.+)@(?P<domain>.+)/" -->
<!--# echo var="1" -->

3.2. References and Indexes 223

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

<!--# echo var="domain" -->
<!--# endif -->

include

Includes the result of another request into a response. The command has the following parameters:

file

specifies an included file, for example:

<!--# include file="footer.html" -->

virtual

specifies an included request, for example:

<!--# include virtual="/remote/body.php?argument=value" -->

Several requests specified on one page and processed by proxied or FastCGI/uwsgi/SCGI/gRPC servers
run in parallel. If sequential processing is desired, the wait parameter should be used.

stub

a non-standard parameter that names the block whose content will be output if the included request
results in an empty body or if an error occurs during the request processing, for example:

<!--# block name="one" --> <!--# endblock -->
<!--# include virtual="/remote/body.php?argument=value" stub="one" -->

The replacement block content is processed in the included request context.

wait

a non-standard parameter that instructs to wait for a request to fully complete before continuing with
SSI processing, for example:

<!--# include virtual="/remote/body.php?argument=value" wait="yes" -->

set

a non-standard parameter that instructs to write a successful result of request processing to the specified
variable, for example:

<!--# include virtual="/remote/body.php?argument=value" set="one" -->

The maximum size of the response is set by the subrequest_output_buffer_size directive:

location /remote/ {
subrequest_output_buffer_size 64k;

...
}

3.2. References and Indexes 224

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

set

Sets a value of a variable. The command has the following parameters:

var

the variable name.

value

the variable value. If an assigned value contains variables, their values are substituted.

Built-in Variables

$date_local

current time in the local time zone. The format is set by the config command with the timefmt parameter.

$date_gmt

current time in GMT. The format is set by the config command with the timefmt parameter.

SSL

Provides the necessary support for HTTPS.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_ssl_module build option.

In packages and images from our repos, the module is included in the build.

s Important

This module requires the OpenSSL library.

Configuration Example

To reduce the processor load it is recommended to

• set the number of worker processes equal to the number of processors,

• enable keep-alive connections,

• enable the shared session cache,

• disable the built-in session cache,

• and possibly increase the session lifetime (by default, 5 minutes):

worker_processes auto;

http {

...

server {
listen 443 ssl;
keepalive_timeout 70;

ssl_protocols TLSv1.2 TLSv1.3;
ssl_ciphers AES128-SHA:AES256-SHA:RC4-SHA:DES-CBC3-SHA:RC4-MD5;

3.2. References and Indexes 225

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssl_certificate /usr/local/angie/conf/cert.pem;
ssl_certificate_key /usr/local/angie/conf/cert.key;
ssl_session_cache shared:SSL:10m;
ssl_session_timeout 10m;

...
}

Directives

ssl_buffer_size

Syntax ssl_buffer_size size;
Default ssl_buffer_size 16k;
Context http, server

Sets the size of the buffer used for sending data.

By default, the buffer size is 16k, which corresponds to minimal overhead when sending big responses.
To minimize Time To First Byte it may be beneficial to use smaller values, for example:

ssl_buffer_size 4k;

ssl_certificate

Syntax ssl_certificate file;
Default —
Context http, server

Specifies a file with the certificate in the PEM format for the given virtual server. If intermediate
certificates should be specified in addition to a primary certificate, they should be specified in the same
file in the following order: the primary certificate comes first, then the intermediate certificates. A secret
key in the PEM format may be placed in the same file.

This directive can be specified multiple times to load certificates of different types, for example, RSA
and ECDSA:

server {
listen 443 ssl;
server_name example.com;

ssl_certificate example.com.rsa.crt;
ssl_certificate_key example.com.rsa.key;

ssl_certificate example.com.ecdsa.crt;
ssl_certificate_key example.com.ecdsa.key;

...
}

Only OpenSSL 1.0.2 or higher supports separate certificate chains for different certificates. With older
versions, only one certificate chain can be used.

3.2. References and Indexes 226

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

s Important

Variables can be used in the file name when using OpenSSL 1.0.2 or higher:

ssl_certificate $ssl_server_name.crt;
ssl_certificate_key $ssl_server_name.key;

Note that using variables implies that a certificate will be loaded for each SSL handshake, and this may
have a negative impact on performance.

The value data:$variable can be specified instead of the file, which loads a certificate from a variable
without using intermediate files. Note that inappropriate use of this syntax may have its security
implications, such as writing secret key data to error log .

s Important

It should be kept in mind that due to the HTTPS protocol limitations for maximum interoperability
virtual servers should listen on different IP addresses.

Added in version 1.2.0: If ssl_ntls is enabled, the directive can accept two arguments (the signature and
the encryption parts of the certificate) instead of one:

listen ... ssl;

ssl_ntls on;

dual NTLS certificate
ssl_certificate sign.crt enc.crt;
ssl_certificate_key sign.key enc.key;

can be used together with a regular RSA certificate
ssl_certificate rsa.crt;
ssl_certificate rsa.key;

ssl_certificate_cache

Syntax ssl_certificate_cache off;
ssl_certificate_cache max=N [inactive=time] [valid=time];

Default ssl_certificate_cache off;
Context http, server

Defines a cache that stores SSL certificates and secret keys specified using variables.

The directive supports the following parameters:

• max — sets the maximum number of elements in the cache. When the cache overflows, the least
recently used (LRU) elements are removed.

• inactive — defines the time after which an element is removed if it has not been accessed. The
default is 10 seconds.

• valid — defines the time during which a cached element is considered valid and can be reused.
The default is 60 seconds. After this period, certificates are reloaded or revalidated.

• off — disables the cache.

Example:

3.2. References and Indexes 227

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssl_certificate $ssl_server_name.crt;
ssl_certificate_key $ssl_server_name.key;
ssl_certificate_cache max=1000 inactive=20s valid=1m;

ssl_certificate_key

Syntax ssl_certificate_key file;
Default —
Context http, server

Specifies a file with the secret key in the PEM format for the given virtual server.

s Important

Variables can be used in the file name when using OpenSSL 1.0.2 or higher.

The value engine:name:id can be specified instead of the file, which loads a secret key with a specified
id from the OpenSSL engine name.

The value data:$variable can be specified instead of the file, which loads a secret key from a variable
without using intermediate files. Note that inappropriate use of this syntax may have its security
implications, such as writing secret key data to error log .

Added in version 1.2.0: If ssl_ntls is enabled, the directive can accept two arguments (the signature and
the encryption parts of the key) instead of one:

listen ... ssl;

ssl_ntls on;

dual NTLS certificate
ssl_certificate sign.crt enc.crt;
ssl_certificate_key sign.key enc.key;

can be used together with a regular RSA certificate
ssl_certificate rsa.crt;
ssl_certificate rsa.key;

ssl_ciphers

Syntax ssl_ciphers ciphers;
Default ssl_ciphers HIGH:!aNULL:!MD5;
Context http, server

Specifies the enabled ciphers. The ciphers are specified in the format understood by the OpenSSL library,
for example:

ssl_ciphers ALL:!aNULL:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP;

The list of ciphers depends on the version of OpenSSL installed. The full list can be viewed using the
openssl ciphers command.

3.2. References and Indexes 228

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

. Attention

The ssl_ciphers directive does not configure ciphers for TLS 1.3 when using OpenSSL. To tune
TLS 1.3 ciphers with OpenSSL, use the ssl_conf_command directive, which was added to support
advanced SSL configuration.

• In LibreSSL, TLS 1.3 ciphers can be configured using ssl_ciphers.

• In BoringSSL, TLS 1.3 ciphers cannot be configured at all.

ssl_client_certificate

Syntax ssl_client_certificate file;
Default —
Context http, server

Specifies a file with trusted CA certificates in the PEM format used to verify client certificates and OCSP
responses if ssl_stapling is enabled.

The list of certificates will be sent to clients. If this is not desired, the ssl_trusted_certificate directive
can be used.

ssl_conf_command

Syntax ssl_conf_command name value;
Default —
Context http, server

Sets arbitrary OpenSSL configuration commands.

s Important

The directive is supported when using OpenSSL 1.0.2 or higher. To configure TLS 1.3 ciphers with
OpenSSL, use the ciphersuites command.

Several ssl_conf_command directives can be specified on the same level:

ssl_conf_command Options PrioritizeChaCha;
ssl_conf_command Ciphersuites TLS_CHACHA20_POLY1305_SHA256;

These directives are inherited from the previous configuration level if and only if there are no
ssl_conf_command directives defined on the current level.

³ Caution

Configuring OpenSSL directly might result in unexpected behavior.

ssl_crl

Syntax ssl_crl file;
Default —
Context http, server

3.2. References and Indexes 229

https://docs.openssl.org/master/man3/SSL_CONF_cmd/

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Specifies a file with revoked certificates (CRL) in the PEM format used to verify client certificates.

ssl_dhparam

Syntax ssl_dhparam file;
Default —
Context http, server

Specifies a file with DH parameters for DHE ciphers.

By default no parameters are set, and therefore DHE ciphers will not be used.

ssl_early_data

Syntax ssl_early_data on | off;
Default ssl_early_data off;
Context http, server

Enables or disables TLS 1.3 early data.

Requests sent within early data are subject to replay attacks. To protect against such attacks at the
application layer, the $ssl_early_data variable should be used.

proxy_set_header Early-Data $ssl_early_data;

s Important

The directive is supported when using OpenSSL 1.1.1 or higher or BoringSSL.

ssl_ecdh_curve

Syntax ssl_ecdh_curve curve;
Default ssl_ecdh_curve auto;
Context http, server

Specifies a curve for ECDHE ciphers.

s Important

When using OpenSSL 1.0.2 or higher, it is possible to specify multiple curves, for example:

ssl_ecdh_curve prime256v1:secp384r1;

The special value auto corresponds to the list of curves built into the OpenSSL library for OpenSSL
1.0.2 or higher, or prime256v1 for older versions.

s Important

When using OpenSSL 1.0.2 or higher, this directive sets the list of curves supported by the server.
Thus, in order for ECDSA certificates to work, it is important to include the curves used in the
certificates.

3.2. References and Indexes 230

https://datatracker.ietf.org/doc/html/rfc8446#section-2.3
https://datatracker.ietf.org/doc/html/rfc8470
https://boringssl.googlesource.com/boringssl/

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssl_ntls

Added in version 1.2.0.

Syntax ssl_ntls on | off;
Default ssl_ntls off;
Context http, server

Enables server-side support for NTLS when using the TongSuo TLS library.

listen ... ssl;
ssl_ntls on;

s Important

Angie must be built with the --with-ntls configuration parameter, with the corresponding SSL library
with NTLS support

./configure --with-openssl=../Tongsuo-8.3.0 \
--with-openssl-opt=enable-ntls \
--with-ntls

ssl_ocsp

Syntax ssl_ocsp on | off | leaf;
Default ssl_ocsp off;
Context http, server

Enables OCSP validation of the client certificate chain. The leaf parameter enables validation of the
client certificate only.

For the OCSP validation to work, the ssl_verify_client directive should be set to on or optional.

To resolve the OCSP responder hostname, the resolver directive should also be specified.

Example:

ssl_verify_client on;
ssl_ocsp on;
resolver 127.0.0.53;

ssl_ocsp_cache

Syntax ssl_ocsp_cache off | [shared:name:size];
Default ssl_ocsp_cache off;
Context http, server

Sets the name and size of the cache that stores client certificate status for OCSP validation. The cache is
shared between all worker processes. A cache with the same name can be used in several virtual servers.

The off parameter prohibits the use of the cache.

3.2. References and Indexes 231

https://github.com/Tongsuo-Project/Tongsuo

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssl_ocsp_responder

Syntax ssl_ocsp_responder uri ;
Default —
Context http, server

Overrides the URI of the OCSP responder specified in the "Authority Information Access" certificate
extension for validation of client certificates.

Only http:// OCSP responders are supported:

ssl_ocsp_responder http://ocsp.example.com/;

ssl_password_file

Syntax ssl_password_file file;
Default —
Context http, server

Specifies a file with passphrases for secret keys where each passphrase is specified on a separate line.
Passphrases are tried in turn when loading the key.

Example:

http {
ssl_password_file /etc/keys/global.pass;
...

server {
server_name www1.example.com;
ssl_certificate_key /etc/keys/first.key;

}

server {
server_name www2.example.com;

named pipe can also be used instead of a file
ssl_password_file /etc/keys/fifo;
ssl_certificate_key /etc/keys/second.key;

}
}

ssl_prefer_server_ciphers

Syntax ssl_prefer_server_ciphers on | off;
Default ssl_prefer_server_ciphers off;
Context http, server

Specifies that server ciphers should be preferred over client ciphers when using the SSLv3 and TLS
protocols.

3.2. References and Indexes 232

https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.2.1

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssl_protocols

Syntax ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1] [TLSv1.2] [TLSv1.3];
Default ssl_protocols TLSv1.2 TLSv1.3;
Context http, server

Changed in version 1.2.0: The TLSv1.3 parameter was added to the default set.

Enables the specified protocols.

s Important

The TLSv1.1 and TLSv1.2 parameters work only when OpenSSL 1.0.1 or higher is used.

The TLSv1.3 parameter works only when OpenSSL 1.1.1 or higher is used.

ssl_reject_handshake

Syntax ssl_reject_handshake on | off;
Default ssl_reject_handshake off;
Context http, server

If enabled, SSL handshakes in the server block will be rejected.

For example, in the following configuration, SSL handshakes with server names other than example.com
are rejected:

server {
listen 443 ssl default_server;
ssl_reject_handshake on;

}

server {
listen 443 ssl;
server_name example.com;
ssl_certificate example.com.crt;
ssl_certificate_key example.com.key;

}

ssl_session_cache

Syntax ssl_session_cache off | none | [builtin[:size]] [shared:name:size];
Default ssl_session_cache none;
Context http, server

Sets the types and sizes of caches that store session parameters. A cache can be of any of the following
types:

3.2. References and Indexes 233

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

off the use of a session cache is strictly prohibited: Angie explicitly tells a client that
sessions may not be reused.

none the use of a session cache is gently disallowed: Angie tells a client that sessions
may be reused, but does not actually store session parameters in the cache.

builtin a cache built in OpenSSL; used by one worker process only. The cache size is
specified in sessions. If size is not given, it is equal to 20480 sessions. Use of the
built-in cache can cause memory fragmentation.

shared a cache shared between all worker processes. The cache size is specified in bytes;
one megabyte can store about 4000 sessions. Each shared cache should have an ar-
bitrary name. A cache with the same name can be used in several virtual servers.
It is also used to automatically generate, store, and periodically rotate TLS ses-
sion ticket keys unless configured explicitly using the ssl_session_ticket_key
directive.

Both cache types can be used simultaneously, for example:

ssl_session_cache builtin:1000 shared:SSL:10m;

but using only shared cache without the built-in cache should be more efficient.

ssl_session_ticket_key

Syntax ssl_session_ticket_key file;
Default —
Context http, server

Sets a file with the secret key used to encrypt and decrypt TLS session tickets. The directive is necessary
if the same key has to be shared between multiple servers. By default, a randomly generated key is used.

If several keys are specified, only the first key is used to encrypt TLS session tickets. This allows
configuring key rotation, for example:

ssl_session_ticket_key current.key;
ssl_session_ticket_key previous.key;

The file must contain 80 or 48 bytes of random data and can be created using the following command:

openssl rand 80 > ticket.key

Depending on the file size either AES256 (for 80-byte keys) or AES128 (for 48-byte keys) is used for
encryption.

ssl_session_tickets

Syntax ssl_session_tickets on | off;
Default ssl_session_tickets on;
Context http, server

Enables or disables session resumption through TLS session tickets.

3.2. References and Indexes 234

https://datatracker.ietf.org/doc/html/rfc5077

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssl_session_timeout

Syntax ssl_session_timeout time;
Default ssl_session_timeout 5m;
Context http, server

Specifies a time during which a client may reuse the session parameters.

ssl_stapling

Syntax ssl_stapling on | off;
Default ssl_stapling off;
Context http, server

Enables or disables stapling of OCSP responses by the server. Example:

ssl_stapling on;
resolver 127.0.0.53;

For OCSP stapling to work, the certificate of the server certificate issuer should be known. If the
ssl_certificate file does not contain intermediate certificates, the certificate of the server certificate issuer
should be present in the file specified by the ssl_trusted_certificate directive.

. Attention

For a resolution of the OCSP responder hostname, the resolver directive should also be specified.

ssl_stapling_file

Syntax ssl_stapling_file file;
Default —
Context http, server

When set, the stapled OCSP response will be taken from the specified file instead of querying the OCSP
responder specified in the server certificate.

The file should be in the DER format as produced by the openssl ocsp command.

ssl_stapling_responder

Syntax ssl_stapling_responder uri;
Default —
Context http, server

Overrides the URI of the OCSP responder specified in the "Authority Information Access" certificate
extension.

Only http:// OCSP responders are supported:

ssl_stapling_responder http://ocsp.example.com/;

3.2. References and Indexes 235

https://datatracker.ietf.org/doc/html/rfc6066#section-8
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.2.1

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssl_stapling_verify

Syntax ssl_stapling_verify on | off;
Default ssl_stapling_verify off;
Context http, server

Enables or disables verification of OCSP responses by the server.

For verification to work, the certificate of the server certificate issuer, the root certificate, and all inter-
mediate certificates should be configured as trusted using the ssl_trusted_certificate directive.

ssl_trusted_certificate

Syntax ssl_trusted_certificate file;
Default —
Context http, server

Specifies a file with trusted CA certificates in the PEM format used to verify client certificates and OCSP
responses if ssl_stapling is enabled.

In contrast to the certificate set by ssl_client_certificate, the list of these certificates will not be sent to
clients.

ssl_verify_client

Syntax ssl_verify_client on | off | optional | optional_no_ca;
Default ssl_verify_client off;
Context http, server

Enables verification of client certificates. The verification result is stored in the $ssl_client_verify
variable.

optional requests the client certificate and verifies it if the certificate is present.
optional_no_ca requests the client certificate but does not require it to be signed by a trusted CA

certificate. This is intended for the use in cases when a service that is external
to Angie performs the actual certificate verification.

ssl_verify_depth

Syntax ssl_verify_depth number ;
Default ssl_verify_depth 1;
Context http, server

Sets the verification depth in the client certificates chain.

Error Processing

The http_ssl module supports several non-standard error codes that can be used for redirects using the
error_page directive:

3.2. References and Indexes 236

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

495 an error has occurred during the client certificate verification;
496 a client has not presented the required certificate;
497 a regular request has been sent to the HTTPS port.

The redirection happens after the request is fully parsed and the variables, such as $request_uri , $uri ,
$args and others, are available.

Built-in Variables

The http_ssl module supports built-in variables:

$ssl_alpn_protocol

returns the protocol selected by ALPN during the SSL handshake, or an empty string otherwise.

$ssl_cipher

returns the name of the cipher used for an established SSL connection.

$ssl_ciphers

returns the list of ciphers supported by the client. Known ciphers are listed by names, unknown are
shown in hexadecimal, for example:

AES128-SHA:AES256-SHA:0x00ff

s Important

The variable is fully supported only when using OpenSSL version 1.0.2 or higher. With older versions,
the variable is available only for new sessions and lists only known ciphers.

$ssl_client_escaped_cert

returns the client certificate in the PEM format (urlencoded) for an established SSL connection.

$ssl_client_fingerprint

returns the SHA1 fingerprint of the client certificate for an established SSL connection.

$ssl_client_i_dn

returns the "issuer DN" string of the client certificate for an established SSL connection according to
RFC 2253.

$ssl_client_i_dn_legacy

returns the "issuer DN" string of the client certificate for an established SSL connection.

$ssl_client_raw_cert

returns the client certificate in the PEM format for an established SSL connection.

3.2. References and Indexes 237

https://datatracker.ietf.org/doc/html/rfc2253

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$ssl_client_s_dn

returns the "subject DN" string of the client certificate for an established SSL connection according to
RFC 2253.

$ssl_client_s_dn_legacy

returns the "subject DN" string of the client certificate for an established SSL connection.

$ssl_client_serial

returns the serial number of the client certificate for an established SSL connection.

$ssl_client_v_end

returns the end date of the client certificate.

$ssl_client_v_remain

returns the number of days until the client certificate expires.

$ssl_client_v_start

returns the start date of the client certificate.

$ssl_client_verify

returns the result of client certificate verification: SUCCESS, FAILED:reason, and NONE if a certificate was
not present.

$ssl_curve

returns the negotiated curve used for SSL handshake key exchange process. Known curves are listed by
names, unknown are shown in hexadecimal, for example:

prime256v1

s Important

The variable is supported only when using OpenSSL version 3.0 or higher. With older versions, the
variable value will be an empty string.

$ssl_curves

returns the list of curves supported by the client. Known curves are listed by names, unknown are shown
in hexadecimal, for example:

0x001d:prime256v1:secp521r1:secp384r1

s Important

The variable is supported only when using OpenSSL version 1.0.2 or higher. With older versions, the
variable value will be an empty string.

The variable is available only for new sessions.

3.2. References and Indexes 238

https://datatracker.ietf.org/doc/html/rfc2253

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$ssl_early_data

returns "1" if TLS 1.3 early data is used and the handshake is not complete, otherwise "".

$ssl_protocol

returns the protocol of an established SSL connection.

$ssl_server_cert_type

takes the values RSA, DSA, ECDSA, ED448, ED25519, SM2, RSA-PSS, or unknown depending on the type of
server certificate and key.

$ssl_server_name

returns the server name requested through SNI.

$ssl_session_id

returns the session identifier of an established SSL connection.

$ssl_session_reused

returns r if an SSL session was reused, or "." otherwise.

Stub Status

The module provides access to basic server status information.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_stub_status_module build option.

In packages and images from our repos, the module is included in the build.

Configuration Example

location = /basic_status {
stub_status;

}

This configuration creates a simple web page with basic status information which may look as follows:

Active connections: 291
server accepts handled requests
16630948 16630948 31070465

Reading: 6 Writing: 179 Waiting: 106

Directives

stub_status

Syntax stub_status;
Default —
Context server, location

The status information will be accessible from the surrounding location.

3.2. References and Indexes 239

http://en.wikipedia.org/wiki/Server_Name_Indication

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Data

The following status information is provided:

Active connections

The current number of active client connections including Waiting connections.

accepts

The total number of accepted client connections.

handled

The total number of handled connections. Generally, the parameter value is the same as accepts unless
some resource limits have been reached (for example, the worker_connections limit).

requests

The total number of client requests.

Reading

The current number of connections where Angie is reading the request header.

Writing

The current number of connections where Angie is writing the response back to the client.

Waiting

The current number of idle client connections waiting for a request.

Built-in Variables

$connections_active

Same as the Active connections value.

$connections_reading

Same as the Reading value.

$connections_writing

Same as the Writing value.

$connections_waiting

Same as the Waiting value.

Sub

The module is a filter that modifies a response by replacing one specified string with another.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_sub_module build option.

In packages and images from our repos, the module is included in the build.

3.2. References and Indexes 240

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Configuration Example

location / {
sub_filter '<a href="http://127.0.0.1:8080/' '<a href="https://$host/';
sub_filter '<img src="http://127.0.0.1:8080/' '<img src="https://$host/';
sub_filter_once on;

}

Directives

sub_filter

Syntax sub_filter string replacement ;
Default —
Context http, server, location

Sets a string to replace and a replacement string. The string to replace is matched ignoring the case.
The string to replace and replacement string can contain variables. Several sub_filter directives can be
specified on the same configuration level. These directives are inherited from the previous configuration
level if and only if there are no sub_filter directives defined on the current level.

sub_filter_last_modified

Syntax sub_filter_last_modified on | off;
Default sub_filter_last_modified off;
Context http, server, location

Allows preserving the "Last-Modified" header field from the original response during replacement to
facilitate response caching.

By default, the header field is removed as contents of the response are modified during processing.

sub_filter_once

Syntax sub_filter_once on | off;
Default sub_filter_once on;
Context http, server, location

Indicates whether to look for each string to replace once or repeatedly.

sub_filter_types

Syntax sub_filter_types mime-type ...;
Default sub_filter_types text/html;
Context http, server, location

Enables string replacement in responses with the specified MIME types in addition to text/html. The
special value "*" matches any MIME type.

3.2. References and Indexes 241

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Upstream

The module is used to define groups of servers that can be referenced by the proxy_pass, fastcgi_pass,
uwsgi_pass, scgi_pass, memcached_pass and grpc_pass directives.

Configuration Example

upstream backend {
zone backend 1m;
server backend1.example.com weight=5;
server backend2.example.com:8080;
server backend3.example.com service=_example._tcp resolve;
server unix:/tmp/backend3;

server backup1.example.com:8080 backup;
server backup2.example.com:8080 backup;

}

resolver 127.0.0.53 status_zone=resolver;

server {
location / {

proxy_pass http://backend;
}

}

Directives

backup_switch (PRO)

Added in version 1.9.0: PRO

Syntax backup_switch permanent[=time];
Default —
Context upstream

The directive enables active backups for the upstream where it occurs. Once a request fails to select
a server in the primary group and resorts to the backup group, that group will become active if the
directive is defined. Subsequent requests are handled by first looking for servers in the active group.

When permanent is defined without a time value, the group remains active once selected, and no auto-
matic reevaluation occurs. If the time limit is set, the active status times out after the specified interval ,
and the balancer reevaluates the primary group, reverting to it if the servers are healthy.

Example:

upstream my_backend {
server primary1.example.com;
server primary2.example.com;

server backup1.example.com backup;
server backup2.example.com backup;

backup_switch permanent=2m;
}

If the balancer fails over from the primary servers to the backup group, all subsequent requests are served
by that backup group for 2 minutes. Once 2 minutes elapse, the balancer reevaluates the primary servers

3.2. References and Indexes 242

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

and makes them active again if they're found to be healthy.

bind_conn (PRO)

Syntax bind_conn value;
Default —
Context upstream

Enables binding the server connection to the client when the value, which is set as a string of variables,
becomes anything other than "" and "0".

. Attention

The bind_conn directive must be used after all directives that set the load balancing method; other-
wise, it won't work. If sticky is also used, bind_conn should appear after sticky.

. Attention

When using the directive, configure the http_proxy module to allow keepalive connections, for exam-
ple:

proxy_http_version 1.1;
proxy_set_header Connection "";

A typical use case for the directive is proxying NTLM-authenticated connections, where the client should
be bound to the server when the negotiation starts:

map $http_authorization $ntlm {
~*^N(?:TLM|egotiate) 1;

}

upstream ntlm_backend {
server 127.0.0.1:8080;
bind_conn $ntlm;

}

server {
...
location / {

proxy_pass http://ntlm_backend;
proxy_http_version 1.1;
proxy_set_header Connection "";
...

}
}

feedback (PRO)

Added in version 1.6.0: PRO

3.2. References and Indexes 243

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Syntax feedback variable [inverse] [factor=number] [account=condition_variable]
[last_byte];

Default —
Context upstream

Enables a feedback-based load balancing mechanism for the upstream. It adjusts the load balancing
decisions dynamically, multiplying each peer's weight by its average feedback value that is affected by
the value of a variable over time and is subject to an optional condition.

The following parameters are accepted:

variable The variable from which the feedback value is taken. It should represent a per-
formance or health metric, and is intended to be supplied by the peer in header
fields or otherwise.
The value is assessed at each response from the peer and factored into the rolling
average according to inverse and factor settings.

inverse If set, the feedback value is interpreted inversely, meaning lower values indicate
better performance.

factor The factor by which the feedback value is weighted when calculating the average.
Valid values are integers between 0 and 99. By default — 90.
The average feedback is calculated using the exponential moving average formula.
The larger is the factor, the less is the average affected by new values; if the
factor is set to 90, the result has 90% of the previous value and only 10% of the
new value.

account Specifies a condition variable that controls which responses should be included
in the calculation. The average is updated with the feedback value only if the
condition variable for the response isn't "" or "0".

ò Note

By default, responses from probes aren't included in the calculation; com-
bining the $upstream_probe variable with account allows to include these
responses or even exclude everything else.

last_byte Allows processing feedback from the upstream server after the full response has
been received, instead of just after the header.

Example:

upstream backend {

zone backend 1m;

feedback $feedback_value factor=80 account=$condition_value;

server backend1.example.com;
server backend2.example.com;

}

map $upstream_http_custom_score $feedback_value {
"high" 100;
"medium" 75;
"low" 50;
default 10;

}

map $upstream_probe $condition_value {

3.2. References and Indexes 244

https://en.wikipedia.org/wiki/Exponential_smoothing

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

"high_priority" "1";
"low_priority" "0";
default "1";

}

This categorizes server responses into different feedback levels based on specific scores obtained from
response header fields, and also adds a condition mapped from $upstream_probe to account only for the
responses from the high_priority probe or responses to regular client requests.

hash

Syntax hash key [consistent];
Default —
Context upstream

Specifies a load balancing method for a server group where the client-server mapping is based on the
hashed key value. The key can contain text, variables, and their combinations. Note that adding or
removing a server from the group may result in remapping most of the keys to different servers. The
method is compatible with the Cache::Memcached Perl library.

If the consistent parameter is specified, the ketama consistent hashing method will be used instead.
The method ensures that only a few keys will be remapped to different servers when a server is added
to or removed from the group. This helps to achieve a higher cache hit ratio for caching servers. The
method is compatible with the Cache::Memcached::Fast Perl library with the ketama_points parameter
set to 160.

ip_hash

Syntax ip_hash;
Default —
Context upstream

Specifies that a group should use a load balancing method where requests are distributed between servers
based on client IP addresses. The first three octets of the client IPv4 address, or the entire IPv6 address,
are used as a hashing key. The method ensures that requests from the same client will always be passed
to the same server except when this server is unavailable. In the latter case client requests will be passed
to another server. Most probably, it will always be the same server as well.

If one of the servers needs to be temporarily removed, it should be marked with the down parameter in
order to preserve the current hashing of client IP addresses.

upstream backend {
ip_hash;

server backend1.example.com;
server backend2.example.com;
server backend3.example.com down;
server backend4.example.com;

}

keepalive

Syntax keepalive connections;
Default —
Context upstream

3.2. References and Indexes 245

https://metacpan.org/pod/Cache::Memcached
https://www.metabrew.com/article/libketama-consistent-hashing-algo-memcached-clients
https://metacpan.org/pod/Cache::Memcached::Fast

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Activates the cache for connections to upstream servers.

The connections parameter sets the maximum number of idle keepalive connections to upstream servers
that are preserved in the cache of each worker process. When this number is exceeded, the least recently
used connections are closed.

ò Note

It should be particularly noted that the keepalive directive does not limit the total number of connec-
tions to upstream servers that an Angie worker process can open. The connections parameter should
be set to a number small enough to let upstream servers process new incoming connections as well.

. Attention

The keepalive directive must be used after all directives that set the load balancing method; other-
wise, it won't work.

Example configuration of memcached upstream with keepalive connections:

upstream memcached_backend {
server 127.0.0.1:11211;
server 10.0.0.2:11211;

keepalive 32;
}

server {
#...

location /memcached/ {
set $memcached_key $uri;
memcached_pass memcached_backend;

}

}

For HTTP, the proxy_http_version directive should be set to "1.1" and the "Connection" header field
should be cleared:

upstream http_backend {
server 127.0.0.1:8080;

keepalive 16;
}

server {
#...

location /http/ {
proxy_pass http://http_backend;
proxy_http_version 1.1;
proxy_set_header Connection "";

...
}

}

3.2. References and Indexes 246

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ò Note

Alternatively, HTTP/1.0 persistent connections can be used by passing the "Connection: Keep-Alive"
header field to an upstream server, though this method is not recommended.

For FastCGI servers, it is required to set fastcgi_keep_conn for keepalive connections to work:

upstream fastcgi_backend {
server 127.0.0.1:9000;

keepalive 8;
}

server {
#...

location /fastcgi/ {
fastcgi_pass fastcgi_backend;
fastcgi_keep_conn on;

...
}

}

ò Note

SCGI and uwsgi protocols do not define a semantics for keepalive connections.

keepalive_requests

Syntax keepalive_requests number ;
Default keepalive_requests 1000;
Context upstream

Sets the maximum number of requests that can be served through one keepalive connection. After the
maximum number of requests are made, the connection is closed.

Closing connections periodically is necessary to free per-connection memory allocations. Therefore, using
too high maximum number of requests could result in excessive memory usage and not recommended.

keepalive_time

Syntax keepalive_time time;
Default keepalive_time 1h;
Context upstream

Limits the maximum time during which requests can be processed through one keepalive connection.
After this time is reached, the connection is closed following the subsequent request processing.

3.2. References and Indexes 247

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

keepalive_timeout

Syntax keepalive_timeout timeout ;
Default keepalive_timeout 60s;
Context upstream

Sets a timeout during which an idle keepalive connection to an upstream server will stay open.

least_conn

Syntax least_conn;
Default —
Context upstream

Specifies that a group should use a load balancing method where a request is passed to the server with
the least number of active connections, taking into account weights of servers. If there are several such
servers, they are tried in turn using a weighted round-robin balancing method.

least_time (PRO)

Syntax least_time header | last_byte [factor=number] [account=condition_variable];
Default —
Context upstream

Specifies that the group should use a load balancing method where an active server's chance of receiving
the request is inversely proportional to its average response time; the less it is, the more requests a server
gets.

header The directive accounts for response headers only.
last_byte The directive uses the average time to receive the entire response.

Added in version 1.7.0: PRO

factor Serves the same purpose as response_time_factor (PRO) and overrides it if set.
account Specifies a condition variable that controls which responses should be included

in the calculation. The average is updated only if the condition variable for the
response isn't "" or "0".

ò Note

By default, responses from probes aren't included in the calculation; com-
bining the $upstream_probe variable with account allows to include these
responses or even exclude everything else.

The respective moving averages, adjusted for factor and account, are also presented as header_time
and response_time in the server's health object among the upstream metrics in the API.

3.2. References and Indexes 248

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

queue (PRO)

Added in version 1.4.0: PRO

Syntax queue number [timeout=time];
Default —
Context upstream

If it is not possible to assign a proxied server to a request on the first attempt (for example, during a
brief service interruption or when there is a surge in load reaching the max_conns limit), the request is
not rejected; instead, Angie attempts to enqueue it for processing.

The number in the directive sets the maximum number of requests in the queue for a worker process. If
the queue is full, a 502 (Bad Gateway) error is returned to the client.

ò Note

The logic of the proxy_next_upstream directive also applies to queued requests. Specifically, if a
server was selected for a request but it cannot be handed over to it, the request may be returned to
the queue.

If a server is not selected to process a queued request within the time set by timeout (default is 60
seconds), a 502 (Bad Gateway) error is returned to the client. Requests from clients that prematurely
close the connection are also removed from the queue; there are counters for requests passing through
the queue in the API .

. Attention

The queue directive must be used after all directives that set the load balancing method; otherwise,
it won't work.

random

Syntax random [two];
Default —
Context upstream

Specifies that a group should use a load balancing method where a request is passed to a randomly
selected server, taking into account weights of servers.

The optional two parameter instructs Angie to randomly select two servers and then choose a server
using the specified method. The default method is least_conn which passes a request to a server with
the least number of active connections.

response_time_factor (PRO)

Syntax response_time_factor number ;
Default response_time_factor 90;
Context upstream

If the least_time (PRO) load balancing method is used, sets the smoothing factor for the previous value
when average response time is calculated using the exponential moving average formula.

3.2. References and Indexes 249

https://en.wikipedia.org/wiki/Exponential_smoothing

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

The larger is the number, the less is the average affected by new values; if the number is set to 90, the
result has 90% of the previous value and only 10% of the new value. The allowed range is 0 to 99,
inclusive.

The respective moving averages are presented as header_time (headers only) and response_time (entire
responses) in the server's health object among the upstream metrics in the API.

ò Note

The calculation accounts for successful responses only; what is considered an unsuccessful re-
sponse is defined by the proxy_next_upstream, fastcgi_next_upstream, uwsgi_next_upstream,
scgi_next_upstream, memcached_next_upstream, and grpc_next_upstream directives. Besides,
header_time is updated only if all headers are received and processed, and response_time is updated
only if the entire response is received.

server

Syntax server address [parameters];
Default —
Context upstream

Defines the address and other parameters of a server. The address can be specified as a domain name or
IP address, with an optional port, or as a UNIX domain socket path specified after the unix: prefix. If
a port is not specified, the port 80 is used. A domain name that resolves to several IP addresses defines
multiple servers at once.

The following parameters can be defined:

weight=number sets the weight of the server; by default, 1.
max_conns=number limits the maximum number of simultaneous active connections to the proxied

server. Default value is 0, meaning there is no limit. If the server group does not
reside in the shared memory , the limitation works per each worker process.

ò Note

If idle keepalive connections, multiple workers, and the shared memory are enabled, the total number
of active and idle connections to the proxied server may exceed the max_conns value.

max_fails=number — sets the number of unsuccessful attempts to communicate with the server that
should happen in the duration set by fail_timeout to consider the server unavailable; it is then retried
after the same duration.

What is considered an unsuccessful attempt is defined by the proxy_next_upstream,
fastcgi_next_upstream, uwsgi_next_upstream, scgi_next_upstream, memcached_next_upstream,
and grpc_next_upstream directives.

When max_fails is reached, the server is also considered unhealthy by the upstream_probe (PRO)
probes; it won't receive client requests until the probes consider it healthy again.

ò Note

If a server directive in a group resolves into multiple servers, its max_fails setting applies to each
server individually.

3.2. References and Indexes 250

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

If an upstream contains only one server after all its server directives are resolved, the max_fails
setting has no effect and will be ignored.

max_fails=1 the default number of attempts
max_fails=0 disables the accounting of attempts

fail_timeout=time — sets the period of time during which a specified number of unsuccessful attempts
to communicate with the server (max_fails) should happen to consider the server unavailable. The
server then remains unavailable for the same amount of time before it is retried.

By default, this is set to 10 seconds.

ò Note

If a server directive in a group resolves into multiple servers, its fail_timeout setting applies to
each server individually.

If an upstream contains only one server after all its server directives are resolved, the fail_timeout
setting has no effect and will be ignored.

backup marks the server as a backup server. It will be passed requests when the primary
servers are unavailable.
If the backup_switch (PRO) directive is configured, its active backup logic is also
applied.

down marks the server as permanently unavailable.
drain (PRO) marks the server as draining; this means it receives only requests from the sessions

that were bound earlier with sticky . Otherwise it behaves similarly to down.

³ Caution

The parameter backup cannot be used along with the hash, ip_hash, and random load balancing
methods.

The down and drain parameters are mutually exclusive.

Added in version 1.1.0.

3.2. References and Indexes 251

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

resolve enables monitoring changes to the list of IP addresses that corresponds to a
domain name, updating it without a configuration reload. The group should be
stored in a shared memory zone; also, you need to define a resolver .

service=name enables resolving DNS SRV records and sets the service name. For this parameter
to work, specify the resolve server parameter, providing a hostname without a
port number.
If there are no dots in the service name, the name is formed according to the
RFC standard: the service name is prefixed with _, then _tcp is added after a
dot. Thus, the service name http will result in _http._tcp.
Angie resolves the SRV records by combining the normalized service name and
the hostname and obtaining the list of servers for the combination via DNS, along
with their priorities and weights.

• Top-priority SRV records (ones that share the minimum priority value)
resolve into primary servers, and other records become backup servers. If
backup is set with server, top-priority SRV records resolve into backup
servers, and other records are ignored.

• Weight is similar to the weight parameter of the server directive. If weight
is set by both the directive and the SRV record, the weight set by the
directive is used.

This example will look up the _http._tcp.backend.example.com record:

server backend.example.com service=http resolve;

Added in version 1.2.0: Angie

Added in version 1.1.0-P1: Angie PRO

sid=id sets the server ID within the group. If the parameter is not set, the ID is set to
the hexadecimal MD5 hash of the IP address and port or the UNIX socket path.

Added in version 1.4.0.

slow_start=time sets the time to recover the weight for a server that goes back online, if load
balancing uses the round-robin or least_conn method.
If the value is set and the server is again considered available and healthy as
defined by max_fails and upstream_probe (PRO), the server will steadily recover
its designated weight within the allocated timeframe.
If the value isn't set, the server in a similar situation will recover its designated
weight immediately.

ò Note

If there's only one server in an upstream, slow_start has no effect and will be ignored.

state (PRO)

Added in version 1.2.0: PRO

Syntax state file;
Default —
Context upstream

3.2. References and Indexes 252

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Specifies the file where the upstream's server list is persisted. When installing from our packages, a
designated /var/lib/angie/state/ (/var/db/angie/state/ on FreeBSD) directory with appropriate
permissions is created to store these files, so you will only need to add the file's basename in the config-
uration:

upstream backend {

zone backend 1m;
state /var/lib/angie/state/<FILE NAME>;

}

The format of this server list is similar to server. The contents of the file change whenever there is any
modification to servers in the /config/http/upstreams/ section via the configuration API. The file is read
at Angie start or configuration reload.

³ Caution

For the state directive to be used in an upstream block, the block should have no server directives;
instead, it must have a shared memory zone (zone).

sticky

Added in version 1.2.0: Angie

Added in version 1.1.0-P1: Angie PRO

Syntax sticky cookie name [attr=value]...;
sticky route $variable...;
sticky learn zone=zone create=$create_var1... lookup=$lookup_var1... [header]
[norefresh] [timeout=time];
sticky learn [zone=zone] lookup=$lookup_var1... remote_action=uri
remote_result=$remote_var [norefresh] [timeout=time];

Default —
Context upstream

Configures the binding of client sessions to proxied servers in the mode specified by the first parameter;
to drain requests from servers that have sticky defined, use the drain option (PRO) in the server block.

. Attention

The sticky directive must be used after all directives that set the load balancing method; otherwise,
it won't work. If bind_conn (PRO) is also used, bind_conn should appear after sticky.

cookie mode

This mode uses cookies to maintain session persistence. It is more suitable for situations where cookies
are already used for session management.

Here, a client's request, not yet bound to any server, is sent to a server chosen according to the configured
balancing method. Also, Angie sets a cookie with a unique value identifying the server.

The cookie's name (name) is set by the sticky directive, and the value (value) corresponds to the sid
parameter of the server directive. Note that the parameter is additionally hashed if the sticky_secret
directive is set.

Subsequent client requests that contain this cookie are forwarded to the server identified by the cookie's
value, which is the server with the specified sid . If selecting a server fails or the chosen server can't

3.2. References and Indexes 253

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

handle the request, another server is selected according to the configured balancing method.

The directive allows assigning attributes to the cookie; the only attribute set by default is path=/.
Attribute values are specified as strings with variables. To remove an attribute, set an empty value for
it: attr=. Thus, sticky cookie path= creates a cookie without path.

Here, Angie creates a cookie named srv_id with a one-hour lifespan and a variable-specified domain:

upstream backend {
server backend1.example.com:8080;
server backend2.example.com:8080;

sticky cookie srv_id domain=$my_domain max-age=3600;
}

route mode

This mode uses predefined route identifiers that can be embedded in URLs, cookies, or other request
properties. It is less flexible because it relies on predefined values but can suit better if such identifiers
are already in place.

Here, when a proxied server receives a request, it can assign a route to the client and return its identifier
in a way that both the client and the server are aware of. The value of the sid parameter of the server
directive must be used as the route identifier. Note that the parameter is additionally hashed if the
sticky_secret directive is set.

Subsequent requests from clients that wish to use this route must contain the identifier issued by the
server in a way that ensures it ends up in Angie variables, for example, in cookie or request arguments.

The directive lists the specific variables used for routing. To select the server to which the incoming
request is forwarded, the first non-empty variable is used; it is then compared with the sid parameter
of the server directive. If selecting a server fails or the chosen server can't handle the request, another
server is selected according to the configured balancing method.

Here, Angie looks for the route identifier in the route cookie, and then in the route request argument:

upstream backend {
server backend1.example.com:8080 "sid=server 1";
server backend2.example.com:8080 "sid=server 2";

sticky route $cookie_route $arg_route;
}

learn mode (PRO 1.4.0+)

This mode uses a dynamically generated key to associate a client with a particular proxied server; it's
more flexible because it assigns servers on the go, stores sessions in a shared memory zone, and supports
different ways of passing session identifiers.

Here, a session is created based on the response from the proxied server. The create and lookup
parameters list variables indicating how new sessions are created and existing sessions are looked up.
Both parameters can occur multiple times.

The session identifier is the value of the first non-empty variable specified with create; for example, this
could be a cookie from the proxied server .

Sessions are stored in a shared memory zone; its name and size are set by the zone parameter. If a
session has been inactive for the time set by timeout, it is deleted. The default is 10 minutes.

By default, Angie extends the session lifetime, updating the last access timestamp on each use. The
norefresh parameter disables this behavior: the session will expire strictly by timeout, even if it con-
tinues to be used. This mode is useful when forced session termination after a time period is required,
for example, when integrating with external session managers.

3.2. References and Indexes 254

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Subsequent requests from clients that wish to use the session must contain its identifier, ensuring that it
ends up in a non-empty variable specified with lookup; its value will then be matched against sessions
in shared memory. If selecting a server fails or the chosen server can't handle the request, another server
is selected according to the configured balancing method.

The header parameter allows creating a session immediately after receiving response headers from the
proxied server. Without it, a session is created only after request processing is complete.

In the example, Angie creates a session, setting a cookie named examplecookie in the response:

upstream backend {
server backend1.example.com:8080;
server backend2.example.com:8080;

sticky learn
create=$upstream_cookie_examplecookie
lookup=$cookie_examplecookie
zone=client_sessions:1m;

}

learn mode with remote_action (PRO 1.8.0+)

The remote_action and remote_result parameters enable dynamically assigning and managing session
IDs via remote session storage. Here, the shared memory zone acts as a local cache, while the remote
storage is the authoritative source. Thus, the create parameter is incompatible with remote_action
because session IDs need to be created remotely. If a session has been inactive for the time set by timeout,
it is deleted. The remote_action setting doesn't affect the timeout. The default is 10 minutes.

The initial session ID always comes from lookup; if it can be found in the local shared memory, Angie
proceeds to select the appropriate server.

If this session ID isn't found locally, Angie sends a synchronous subrequest to remote storage. The
remote_action parameter sets the URI of the remote storage, which should handle session lookup and
creation as follows:

• The storage accepts the session ID from lookup and the locally suggested server ID associated with
this session via custom headers or in some other way.

On Angie's side, two special variables are provided for this purpose: $sticky_sessid and $sticky_sid ,
respectively. The sticky_sid contains the value of the sid= parameter from the server directive
in the upstream block, if set, or an MD5 hash of the server name.

• A 200 response from the remote storage indicates it has accepted the session and saved it with the
suggested values for future use.

• A 409 response from the remote storage indicates that this session ID already exists. In this case,
the response should contain an alternative session ID in the X-Sticky-Sid header. Angie saves
this ID in the variable set by the remote_result parameter.

In the following example, Angie creates a session, uses the $cookie_bar variable for the initial session ID,
and stores alternative session IDs returned by the remote storage in $upstream_http_x_sticky_sid:

http {

upstream u1 {

server srv1;
server srv2;

sticky learn zone=sz:1m
lookup=$cookie_bar
remote_action=/remote_session
remote_result=$upstream_http_x_sticky_sid;

3.2. References and Indexes 255

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

zone z 1m;
}

server {

listen localhost;

location / {

proxy_pass http://u1/;
}

location /remote_session {

internal;
proxy_set_header X-Sticky-Sessid $sticky_sessid;
proxy_set_header X-Sticky-Sid $sticky_sid;
proxy_set_header X-Sticky-Last $msec;
proxy_pass http://remote;

}
}

}

Each time there's a local record miss or timeout expiration (considering norefresh), a subrequest is
made to the resource specified in remote_action.

The zone parameter in the sticky configuration is optional. If not set, Angie relies entirely on the remote
storage: it doesn't cache sessions locally (though it allows caching storage responses via proxy_cache)
and contacts the remote storage every time a session needs to be retrieved or created.

Below is a simplified configuration example. The remote storage returns the session ID in the X-Sid
header and thus confirms or overrides Angie's choice:

http {

proxy_cache_path c1 keys_zone=s1:1m;

upstream tc_0 {
server 10.0.0.1 sid=a;
server 10.0.0.2 sid=b;

sticky learn
lookup=$arg_id
remote_action=@create_session
remote_result=$upstream_http_x_sid;

}

server {
listen 127.0.0.1:8080;

location / {
proxy_pass http://tc_0/;

}

Request to remote session storage
location @create_session {

internal;

3.2. References and Indexes 256

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxy_set_header X-Sticky-Sessid $sticky_sessid;
proxy_set_header X-Sticky-Sid $sticky_sid;
proxy_set_header X-Sticky-Last $msec;

proxy_pass http://session_backend;

proxy_connect_timeout 1s;
proxy_read_timeout 1s;

proxy_cache s1;
proxy_cache_valid 200 1d;
proxy_cache_key "$scheme$proxy_host$request_uri$sticky_sessid";

}
}

}

sticky_secret

Added in version 1.2.0: Angie

Added in version 1.1.0-P1: Angie PRO

Syntax sticky_secret string ;
Default —
Context upstream

Adds the string as the salt value to the MD5 hashing function for the sticky directive in cookie and
route modes. The string may contain variables, for example, $remote_addr :

upstream backend {
server backend1.example.com:8080;
server backend2.example.com:8080;

sticky cookie cookie_name;
sticky_secret my_secret.$remote_addr;

}

Salt is appended to the value being hashed; to verify the hashing mechanism independently:

$ echo -n "<VALUE><SALT>" | md5sum

sticky_strict

Added in version 1.2.0: Angie

Added in version 1.1.0-P1: Angie PRO

Syntax sticky_strict on | off;
Default sticky_strict off;
Context upstream

When enabled, causes Angie to return an HTTP 502 error to the client if the desired server is unavailable,
rather than using any other available server as it would when no servers in the upstream are available.

3.2. References and Indexes 257

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

upstream

Syntax upstream name { ... }
Default —
Context http

Defines a group of servers. Servers can listen on different ports. In addition, servers listening on TCP
and UNIX domain sockets can be mixed.

Example:

upstream backend {
server backend1.example.com weight=5;
server 127.0.0.1:8080 max_fails=3 fail_timeout=30s;
server unix:/tmp/backend3;

server backup1.example.com backup;
}

By default, requests are distributed between the servers using a weighted round-robin balancing
method. In the above example, each 7 requests will be distributed as follows: 5 requests go to back-
end1.example.com and one request to each of the second and third servers.

If an error occurs during communication with a server, the request will be passed to the next server,
and so on until all of the functioning servers will be tried. If a successful response could not be obtained
from any of the servers, the client will receive the result of the communication with the last server.

zone

Syntax zone name [size];
Default —
Context upstream

Defines the name and size of the shared memory zone that keeps the group's configuration and run-time
state that are shared between worker processes. Several groups may share the same zone. In this case,
it is enough to specify the size only once.

Built-in Variables

The http_upstream module supports the following built-in variables:

$sticky_sessid

Used with remote_action in sticky ; stores the initial session ID taken from lookup.

$sticky_sid

Used with remote_action in sticky ; stores the server ID previously associated with the session.

$upstream_addr

stores the IP address and port, or the path to the UNIX domain socket of the upstream server. If several
servers were contacted during request processing, their addresses are separated by commas, e.g.:

192.168.1.1:80, 192.168.1.2:80, unix:/tmp/sock

If an internal redirect from one server group to another happens, initiated by "X-Accel-Redirect" or
error_page, then the server addresses from different groups are separated by colons, e.g.:

3.2. References and Indexes 258

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

192.168.1.1:80, 192.168.1.2:80, unix:/tmp/sock : 192.168.10.1:80, 192.168.10.2:80

If a server cannot be selected, the variable keeps the name of the server group.

$upstream_bytes_received

number of bytes received from an upstream server. Values from several connections are separated by
commas and colons like addresses in the $upstream_addr variable.

$upstream_bytes_sent

number of bytes sent to an upstream server. Values from several connections are separated by commas
and colons like addresses in the $upstream_addr variable.

$upstream_cache_status

keeps the status of accessing a response cache. The status can be either MISS, BYPASS, EXPIRED, STALE,
UPDATING, REVALIDATED or HIT:

• MISS: The response isn't found in the cache, and the request is forwarded to the upstream server.

• BYPASS: The cache is bypassed, and the request is directly forwarded to the upstream server.

• EXPIRED: The cached response is stale, and a new request for the updated content is sent to the
upstream server.

• STALE: The cached response is stale, but will be served to the clients until an update has been
eventually fetched from the upstream server.

• UPDATING: The cached response is stale, but will be served to the clients until the currently ongoing
update from the upstream server has been finished.

• REVALIDATED: The cached response is stale, but is successfully revalidated and doesn't need an
update from the upstream server.

• HIT: The response was served from the cache.

If the cache was bypassed entirely without accessing it, the variable isn't set.

$upstream_connect_time

keeps time spent on establishing a connection with the upstream server; the time is kept in seconds with
millisecond resolution. In case of SSL, includes time spent on handshake. Times of several connections
are separated by commas and colons like addresses in the $upstream_addr variable.

$upstream_cookie_<name>

cookie with the specified name sent by the upstream server in the "Set-Cookie" response header field.
Only the cookies from the response of the last server are saved.

$upstream_header_time

stores time spent on receiving the response header from the upstream server; the time is kept in seconds
with millisecond resolution. Times of several responses are separated by commas and colons like addresses
in the $upstream_addr variable.

$upstream_http_<name>

stores server response header fields. For example, the Server response header field is available through
the $upstream_http_server variable. The rules of converting header field names to variable names are
the same as for the variables that start with the "$http_" prefix. Only the header fields from the
response of the last server are saved.

3.2. References and Indexes 259

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$upstream_queue_time

stores time the request spent in the queue before a server was selected; the time is kept in seconds with
millisecond resolution. Times of several selection attempts are separated by commas and colons, like
addresses in the $upstream_addr variable.

$upstream_response_length

keeps the length of the response obtained from the upstream server; the length is kept in bytes. Lengths
of several responses are separated by commas and colons like addresses in the $upstream_addr variable.

$upstream_response_time

keeps time spent on receiving the response from the upstream server; the time is kept in seconds with
millisecond resolution. Times of several responses are separated by commas and colons like addresses in
the $upstream_addr variable.

$upstream_status

keeps status code of the response obtained from the upstream server. Status codes of several responses
are separated by commas and colons like addresses in the $upstream_addr variable. If a server cannot
be selected, the variable keeps the 502 (Bad Gateway) status code.

$upstream_sticky_status

Status of sticky requests.

"" Request sent to upstream without sticky enabled.
NEW Request without sticky information.
HIT Request with sticky information routed to the desired backend.
MISS Request with sticky information routed to the backend selected by the load bal-

ancing algorithm.

Values from multiple connections are separated by commas and colons, similar to addresses in the
$upstream_addr variable.

$upstream_trailer_<name>

stores fields from the end of the response obtained from the upstream server.

Upstream Probe

The module implements active health probes for Upstream.

Configuration Example

server {
listen ...;

location /backend {
...
proxy_pass http://backend;

upstream_probe backend_probe
uri=/probe
port=10004
interval=5s

3.2. References and Indexes 260

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

test=$good
essential
fails=3
passes=3
max_body=10m
mode=idle;

}
}

Directives

upstream_probe (PRO)

Added in version 1.2.0: PRO

Syntax upstream_probe name [uri=address] [port=number] [interval=time]
[method=method] [test=condition] [essential [persistent]] [fails=number]
[passes=number] [max_body=size] [mode=always | idle | onfail];

Default —
Context location

Defines an active health probe for servers within the upstream groups that are specified for proxy_pass,
uwsgi_pass, and so on in the same location context with the upstream_probe directive. Subsequently,
Angie regularly performs requests according to the specified parameters to each server in the upstream
group.

A server passes the probe if the request to it succeeds, considering all parameter settings of the
upstream_probe directive and all parameters that control how upstreams are used by the location
context where it is defined. This includes the proxy_next_upstream and uwsgi_next_upstream direc-
tives, etc.; also, proxy_set_header and so on.

To make use of the probes, the upstream must have a shared memory zone (zone). One upstream may
be configured with several probes.

The following parameters are accepted:

3.2. References and Indexes 261

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

name Mandatory name of the probe.
uri Request URI to be added to the argument for proxy_pass, uwsgi_pass, etc. By

default — /.
port Alternative port number for the probe request.
interval Interval between probes. By default — 5s.
method HTTP method of the probe request. By default — GET.
test The condition to be checked during the request; defined as a string with variables.

If variable substitution yields "" or "0", the probe is not passed.
essential If set, the initial state of the server is subject to verification and client requests

are not forwarded to it until the probe is passed.
persistent Setting this parameter requires enabling essential first; persistent servers

that were working prior to a configuration reload start receiving requests without
being required to pass this probe first.

fails Number of consecutive failed requests that renders the server unhealthy. By
default — 1.

passes Number of consecutive successful requests that renders the server healthy. By
default — 1.

max_body Maximum amount of memory for the response body. By default — 256k.
mode Probe mode, depending on the servers' health:

• always — servers are probed regardless of their state;
• idle — probes affect unhealthy servers and servers where interval has

elapsed since the last client request.
• onfail — only unhealthy servers are probed.

By default — always.

Example:

upstream backend {
zone backend 1m;

server backend1.example.com;
server backend2.example.com;

}

map $upstream_status $good {
200 "1";

}

server {
listen ...;

location /backend {
...
proxy_pass http://backend;

upstream_probe backend_probe
uri=/probe
port=10004
interval=5s
test=$good
essential
persistent
fails=3
passes=3
max_body=10m
mode=idle;

}

3.2. References and Indexes 262

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

}

Details of probe operation:

• Initially, the server won't receive client requests until it passes all essential probes configured for
it (skipping persistent ones if the configuration was reloaded and the server was deemed healthy
prior to that). If there are no such probes, the server is considered healthy.

• The server is considered unhealthy and won't receive client requests, if any of the probes configured
for it hits its fails threshold or the server itself reaches the max_fails threshold.

• For an unhealthy server to be considered healthy again, all probes configured for it must reach
their respective passes thresholds; after that, the max_fails threshold is considered.

Built-in Variables

The http_upstream_probe module supports the following built-in variables:

$upstream_probe (PRO)

Name of the currently active upstream_probe.

$upstream_probe_body (PRO)

Server response body, received during an upstream_probe; its size is limited by max_body.

UserID

The module sets cookies suitable for client identification. Received and set cookies can be logged using
the built-in variables $uid_got and $uid_set . This module is compatible with the mod_uid module for
Apache.

Configuration Example

userid on;
userid_name uid;
userid_domain example.com;
userid_path /;
userid_expires 365d;
userid_p3p 'policyref="/w3c/p3p.xml", CP="CUR ADM OUR NOR STA NID"';

Directives

userid

Syntax userid on | v1 | log | off;
Default userid off;
Context http, server, location

Enables or disables setting cookies and logging the received cookies:

on enables the setting of version 2 cookies and logging of the received cookies;
v1 enables the setting of version 1 cookies and logging of the received cookies;
log disables the setting of cookies, but enables logging of the received cookies;
off disables the setting of cookies and logging of the received cookies.

3.2. References and Indexes 263

http://www.lexa.ru/programs/mod-uid.html

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

userid_domain

Syntax userid_domain name | none;
Default userid_domain none;
Context http, server, location

Defines a domain for which the cookie is set. The none parameter disables setting of a domain for the
cookie.

userid_expires

Syntax userid_expires time | max | off;
Default userid_expires off;
Context http, server, location

Sets a time during which a browser should keep the cookie. The parameter max will cause the cookie to
expire on "31 Dec 2037 23:55:55 GMT". The parameter off will cause the cookie to expire at the end
of a browser session.

userid_flags

Syntax userid_flags off | flag ...;
Default userid_flags off;
Context http, server, location

If the parameter is not off, defines one or more additional flags for the cookie: secure, httponly,
samesite=strict, samesite=lax, samesite=none.

userid_mark

Syntax userid_mark letter | digit | = | off;
Default userid_mark off;
Context http, server, location

If the parameter is not off, enables the cookie marking mechanism and sets the character used as a mark.
This mechanism is used to add or change userid_p3p and/or a cookie expiration time while preserving
the client identifier. A mark can be any letter of the English alphabet (case-sensitive), digit, or the "="
character.

If the mark is set, it is compared with the first padding symbol in the base64 representation of the client
identifier passed in a cookie. If they do not match, the cookie is resent with the specified mark, expiration
time, and "P3P" header.

userid_name

Syntax userid_name name;
Default userid_name uid;
Context http, server, location

Sets the cookie name.

3.2. References and Indexes 264

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

userid_p3p

Syntax userid_p3p string | none;
Default userid_p3p none;
Context http, server, location

Sets a value for the "P3P" header field that will be sent along with the cookie. If the directive is set to
the special value none, the "P3P" header will not be sent in a response.

userid_path

Syntax userid_path path;
Default userid_path /;
Context http, server, location

Defines a path for which the cookie is set.

userid_service

Syntax userid_service number ;
Default userid_service IP address of the server;
Context http, server, location

If identifiers are issued by multiple servers (services), each service should be assigned its own number to
ensure that client identifiers are unique. For version 1 cookies, the default value is zero. For version 2
cookies, the default value is the number composed from the last four octets of the server's IP address.

Built-in Variables

$uid_got

The cookie name and received client identifier.

$uid_reset

If the variable is set to a non-empty string that is not 0, the client identifiers are reset. The special value
log additionally leads to the output of messages about the reset identifiers to the error_log .

$uid_set

The cookie name and sent client identifier.

uWSGI

Allows passing requests to a uWSGI server.

Configuration Example

location / {
include uwsgi_params;
uwsgi_pass localhost:9000;

}

3.2. References and Indexes 265

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Directives

uwsgi_bind

Syntax uwsgi_bind address [transparent] | off;
Default —
Context http, server, location

Makes outgoing connections to a uWSGI server originate from the specified local IP address with an
optional port. Parameter value can contain variables. The special value off cancels the effect of the
uwsgi_bind directive inherited from the previous configuration level, which allows the system to auto-
assign the local IP address and port.

The transparent parameter allows outgoing connections to a uWSGI server originate from a non-local
IP address, for example, from a real IP address of a client:

uwsgi_bind $remote_addr transparent;

In order for this parameter to work, it is usually necessary to run Angie worker processes with the
superuser privileges. On Linux it is not required as if the transparent parameter is specified, worker
processes inherit the CAP_NET_RAW capability from the master process.

s Important

It is necessary to configure kernel routing table to intercept network traffic from the uWSGI server.

uwsgi_buffer_size

Syntax uwsgi_buffer_size size;
Default uwsgi_buffer_size 4k|8k;
Context http, server, location

Sets the size of the buffer used for reading the first part of the response received from the uWSGI server.
This part usually contains a small response header. By default, the buffer size is equal to one memory
page. This is either 4K or 8K, depending on a platform. It can be made smaller, however.

uwsgi_buffering

Syntax uwsgi_buffering on | off;
Default uwsgi_buffering on;
Context http, server, location

Enables or disables buffering of responses from the uWSGI server.

on Angie receives a response from the uWSGI server as soon as possible, saving
it into the buffers set by the uwsgi_buffer_size and uwsgi_buffers directives.
If the whole response does not fit into memory, a part of it can be saved to
a temporary file on the disk. Writing to temporary files is controlled by the
uwsgi_max_temp_file_size and uwsgi_temp_file_write_size directives.

off The response is passed to a client synchronously, immediately as it is received.
Angie will not try to read the whole response from the uWSGI server. The
maximum size of the data that Angie can receive from the server at a time is set
by the uwsgi_buffer_size directive.

3.2. References and Indexes 266

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Buffering can also be enabled or disabled by passing "yes" or "no" in the "X-Accel-Buffering" response
header field. This capability can be disabled using the uwsgi_ignore_headers directive.

uwsgi_buffers

Syntax uwsgi_buffers number size;
Default uwsgi_buffers 8 4k | 8k;
Context http, server, location

Sets the number and size of the buffers used for reading a response from the uWSGI server, for a single
connection.

By default, the buffer size is equal to one memory page. This is either 4K or 8K, depending on a platform.

uwsgi_busy_buffers_size

Syntax uwsgi_busy_buffers_size size;
Default uwsgi_busy_buffers_size 8k | 16k;
Context http, server, location

When buffering of responses from the uWSGI server is enabled, limits the total size of buffers that can
be busy sending a response to the client while the response is not yet fully read. In the meantime, the
rest of the buffers can be used for reading the response and, if needed, buffering part of the response to
a temporary file.

By default, size is limited by the size of two buffers set by the uwsgi_buffer_size and uwsgi_buffers
directives.

uwsgi_cache

Syntax uwsgi_cache zone | off;
Default uwsgi_cache off;
Context http, server, location

Defines a shared memory zone used for caching. The same zone can be used in several places. Parameter
value can contain variables.

off disables caching inherited from the previous configuration level.

uwsgi_cache_background_update

Syntax uwsgi_cache_background_update on | off;
Default uwsgi_cache_background_update off;
Context http, server, location

Allows starting a background subrequest to update an expired cache item, while a stale cached response
is returned to the client.

. Attention

Note that it is necessary to allow the usage of a stale cached response when it is being updated.

3.2. References and Indexes 267

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

uwsgi_cache_bypass

Syntax uwsgi_cache_bypass ...;
Default —
Context http, server, location

Defines conditions under which the response will not be taken from a cache. If at least one value of the
string parameters is not empty and is not equal to "0" then the response will not be taken from the
cache:

uwsgi_cache_bypass $cookie_nocache $arg_nocache$arg_comment;
uwsgi_cache_bypass $http_pragma $http_authorization;

Can be used along with the uwsgi_no_cache directive.

uwsgi_cache_key

Syntax uwsgi_cache_key string ;
Default —
Context http, server, location

Defines a key for caching, for example

uwsgi_cache_key localhost:9000$request_uri;

uwsgi_cache_lock

Syntax uwsgi_cache_lock on | off;
Default uwsgi_cache_lock off;
Context http, server, location

When enabled, only one request at a time will be allowed to populate a new cache element identified
according to the uwsgi_cache_key directive by passing a request to a uWSGI server. Other requests of
the same cache element will either wait for a response to appear in the cache or the cache lock for this
element to be released, up to the time set by the uwsgi_cache_lock_timeout directive.

uwsgi_cache_lock_age

Syntax uwsgi_cache_lock_age time;
Default uwsgi_cache_lock_age 5s;
Context http, server, location

If the last request passed to the uWSGI server for populating a new cache element has not completed
for the specified time, one more request may be passed to the uWSGI server.

uwsgi_cache_lock_timeout

Syntax uwsgi_cache_lock_timeout time;
Default uwsgi_cache_lock_timeout 5s;
Context http, server, location

3.2. References and Indexes 268

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Sets a timeout for uwsgi_cache_lock . When the time expires, the request will be passed to the uWSGI
server, however, the response will not be cached.

uwsgi_cache_max_range_offset

Syntax uwsgi_cache_max_range_offset number ;
Default —
Context http, server, location

Sets an offset in bytes for byte-range requests. If the range is beyond the offset, the range request will
be passed to the uWSGI server and the response will not be cached.

uwsgi_cache_methods

Syntax uwsgi_cache_methods GET | HEAD | POST ...;
Default uwsgi_cache_methods GET HEAD;
Context http, server, location

If the client request method is listed in this directive then the response will be cached. "GET" and
"HEAD" methods are always added to the list, though it is recommended to specify them explicitly. See
also the uwsgi_no_cache directive.

uwsgi_cache_min_uses

Syntax uwsgi_cache_min_uses number ;
Default uwsgi_cache_min_uses 1;
Context http, server, location

Sets the number of requests after which the response will be cached.

uwsgi_cache_path

Syntax uwsgi_cache_path path [levels=levels] [use_temp_path=on | off]
keys_zone=name:size [inactive=time] [max_size=size] [min_free=size]
[manager_files=number] [manager_sleep=time] [manager_threshold=time]
[loader_files=number] [loader_sleep=time] [loader_threshold=time];

Default —
Context http

Sets the path and other parameters of a cache. Cache data are stored in files. The file name in a cache
is a result of applying the MD5 function to the cache key .

The levels parameter defines hierarchy levels of a cache: from 1 to 3, each level accepts values 1 or 2.
For example, in the following configuration:

uwsgi_cache_path /data/angie/cache levels=1:2 keys_zone=one:10m;

file names in a cache will look like this:

/data/angie/cache/c/29/b7f54b2df7773722d382f4809d65029c

A cached response is first written to a temporary file, and then the file is renamed. Temporary files and
the cache can be put on different file systems. However, be aware that in this case a file is copied across

3.2. References and Indexes 269

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

two file systems instead of the cheap renaming operation. It is thus recommended that for any given
location both cache and a directory holding temporary files are put on the same file system.

The directory for temporary files is set based on the use_temp_path parameter.

on If this parameter is omitted or set to the value on, the directory set by the
uwsgi_temp_path directive for the given location will be used.

off Temporary files will be put directly in the cache directory.

In addition, all active keys and information about data are stored in a shared memory zone, whose name
and size are configured by the keys_zone parameter. One megabyte zone can store about 8 thousand
keys.

Cached data that are not accessed during the time specified by the inactive parameter get removed
from the cache regardless of their freshness.

By default, inactive is set to 10 minutes.

A special cache manager process monitors the maximum cache size and the minimum amount of free
space on the file system with cache, and when the size is exceeded or there is not enough free space, it
removes the least recently used data. The data is removed in iterations.

max_size maximum cache size
min_free minimum amount of free space on the file system with cache
manager_files limits the number of items to be deleted during one iteration

By default, 100
manager_threshold limits the duration of one iteration

By default, 200 milliseconds
manager_sleep configures a pause between iterations

By default, 50 milliseconds

A minute after Angie starts, the special cache loader process is activated. It loads information about
previously cached data stored on file system into a cache zone. The loading is also done in iterations.

loader_files limits the number of items to load during one iteration
By default, 100

loader_threshold limits the duration of one iteration
By default, 200 milliseconds

loader_sleep configures a pause between iterations
By default, 50 milliseconds

uwsgi_cache_revalidate

Syntax uwsgi_cache_revalidate on | off;
Default uwsgi_cache_revalidate off;
Context http, server, location

Enables revalidation of expired cache items using conditional requests with the "If-Modified-Since" and
"If-None-Match" header fields.

3.2. References and Indexes 270

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

uwsgi_cache_use_stale

Syntax uwsgi_cache_use_stale error | timeout | invalid_header | updating | http_500
| http_503 | http_403 | http_404 | http_429 | off ...;

Default uwsgi_cache_use_stale off;
Context http, server, location

Determines in which cases a stale cached response can be used during communication with the uwsgi
server. The directive's parameters match the parameters of the uwsgi_next_upstream directive.

error permits using a stale cached response if a uwsgi server to process a request cannot
be selected.

updating additional parameter, permits using a stale cached response if it is currently being
updated. This allows minimizing the number of accesses to uwsgi servers when
updating cached data.

Using a stale cached response can also be enabled directly in the response header for a specified number
of seconds after the response became stale:

• The stale-while-revalidate extension of the "Cache-Control" header field permits using a stale
cached response if it is currently being updated.

• The stale-if-error extension of the "Cache-Control" header field permits using a stale cached re-
sponse in case of an error.

ò Note

This has lower priority than using the directive parameters.

To minimize the number of accesses to uwsgi servers when populating a new cache element, the
uwsgi_cache_lock directive can be used.

uwsgi_cache_valid

Syntax uwsgi_cache_valid [code ...] time;
Default —
Context http, server, location

Sets caching time for different response codes. For example, the following directives

uwsgi_cache_valid 200 302 10m;
uwsgi_cache_valid 404 1m;

set 10 minutes of caching for responses with codes 200 and 302 and 1 minute for responses with code
404.

If only caching time is specified

uwsgi_cache_valid 5m;

then only 200, 301, and 302 responses are cached.

In addition, the any parameter can be specified to cache any responses:

3.2. References and Indexes 271

https://datatracker.ietf.org/doc/html/rfc5861#section-3
https://datatracker.ietf.org/doc/html/rfc5861#section-4

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

uwsgi_cache_valid 200 302 10m;
uwsgi_cache_valid 301 1h;
uwsgi_cache_valid any 1m;

ò Note

Parameters of caching can also be set directly in the response header. This has higher priority than
setting of caching time using the directive.

• The "X-Accel-Expires" header field sets caching time of a response in seconds. The zero value
disables caching for a response. If the value starts with the @ prefix, it sets an absolute time in
seconds since Epoch, up to which the response may be cached.

• If the header does not include the "X-Accel-Expires" field, parameters of caching may be set in the
header fields "Expires" or "Cache-Control".

• If the header includes the "Set-Cookie" field, such a response will not be cached.

• If the header includes the "Vary" field with the special value "*", such a response will not be
cached. If the header includes the "Vary" field with another value, such a response will be cached
taking into account the corresponding request header fields.

Processing of one or more of these response header fields can be disabled using the uwsgi_ignore_headers
directive.

uwsgi_connect_timeout

Syntax uwsgi_connect_timeout time;
Default uwsgi_connect_timeout 60s;
Context http, server, location

Defines a timeout for establishing a connection with a uwsgi server. It should be noted that this timeout
cannot usually exceed 75 seconds.

uwsgi_connection_drop

Syntax uwsgi_connection_drop time | on | off;
Default uwsgi_connection_drop off;
Context http, server, location

Enables termination of all connections to the proxied server after it has been removed from the group or
marked as permanently unavailable by a reresolve process or the API command DELETE.

A connection is terminated when the next read or write event is processed for either the client or the
proxied server.

Setting time enables a connection termination timeout ; with on set, connections are dropped immediately.

uwsgi_force_ranges

Syntax uwsgi_force_ranges on | off;
Default uwsgi_force_ranges off;
Context http, server, location

Enables byte-range support for both cached and uncached responses from the uwsgi server regardless of
the "Accept-Ranges" field in these responses.

3.2. References and Indexes 272

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

uwsgi_hide_header

Syntax uwsgi_hide_header field ;
Default —
Context http, server, location

By default, Angie does not pass the header fields Status and X-Accel-... from the response of a uwsgi
server to a client. The uwsgi_hide_header directive sets additional fields that will not be passed. If, on
the contrary, the passing of fields needs to be permitted, the uwsgi_pass_header directive can be used.

uwsgi_ignore_client_abort

Syntax uwsgi_ignore_client_abort on | off;
Default uwsgi_ignore_client_abort off;
Context http, server, location

Determines whether the connection with a uwsgi server should be closed when a client closes the con-
nection without waiting for a response.

uwsgi_ignore_headers

Syntax uwsgi_ignore_headers field ...;
Default —
Context http, server, location

Disables processing of certain response header fields from the uwsgi server. The following fields can be
ignored: "X-Accel-Redirect", "X-Accel-Expires", "X-Accel-Limit-Rate", "X-Accel-Buffering", "X-Accel-
Charset", "Expires", "Cache-Control", "Set-Cookie", and "Vary".

If not disabled, processing of these header fields has the following effect:

• "X-Accel-Expires", "Expires", "Cache-Control", "Set-Cookie" and "Vary" set the parameters of
response caching ;

• "X-Accel-Redirect" performs an internal redirect to the specified URI;

• "X-Accel-Limit-Rate" sets the rate limit for transmission of a response to a client;

• "X-Accel-Buffering" enables or disables buffering of a response;

• "X-Accel-Charset" sets the desired charset of a response.

uwsgi_intercept_errors

Syntax uwsgi_intercept_errors on | off;
Default uwsgi_intercept_errors off;
Context http, server, location

Determines whether uwsgi server responses with codes greater than or equal to 300 should be passed to
a client or be intercepted and redirected to Angie for processing with the error_page directive.

3.2. References and Indexes 273

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

uwsgi_limit_rate

Syntax uwsgi_limit_rate rate;
Default uwsgi_limit_rate 0;
Context http, server, location

Limits the speed of reading the response from the uwsgi server. The rate is specified in bytes per second;
variables can be used.

0 disables rate limiting

ò Note

The limit is set per a request, and so if Angie simultaneously opens two connections to the uwsgi
server, the overall rate will be twice as much as the specified limit. The limitation works only if
buffering of responses from the uwsgi server is enabled.

uwsgi_max_temp_file_size

Syntax uwsgi_max_temp_file_size size;
Default uwsgi_max_temp_file_size 1024m;
Context http, server, location

When buffering of responses from the uwsgi server is enabled, and the whole response does not fit into
the buffers set by the uwsgi_buffer_size and uwsgi_buffers directives, a part of the response can be
saved to a temporary file. This directive sets the maximum size of the temporary file. The size of data
written to the temporary file at a time is set by the uwsgi_temp_file_write_size directive.

0 disables buffering of responses to temporary files

ò Note

This restriction does not apply to responses that will be cached or stored on disk .

uwsgi_modifier1

Syntax uwsgi_modifier1 number ;
Default uwsgi_modifier1 0;
Context http, server, location

Sets the value of the modifier1 field in the uwsgi packet header.

uwsgi_modifier2

Syntax uwsgi_modifier2 number ;
Default uwsgi_modifier2 0;
Context http, server, location

3.2. References and Indexes 274

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Sets the value of the modifier2 field in the uwsgi packet header.

uwsgi_next_upstream

Syntax uwsgi_next_upstream error | timeout | invalid_header | http_500 | http_503 |
http_403 | http_404 | http_429 | non_idempotent | off ...;

Default uwsgi_next_upstream error timeout;
Context http, server, location

Specifies in which cases a request should be passed to the next server in the upstream group:

error an error occurred while establishing a connection with the server, passing a re-
quest to it, or reading the response header;

timeout a timeout has occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

invalid_header a server returned an empty or invalid response;
http_500 a server returned a response with the code 500;
http_503 a server returned a response with the code 503;
http_403 a server returned a response with the code 403;
http_404 a server returned a response with the code 404;
http_429 a server returned a response with the code 429;
non_idempotent normally, requests with a non-idempotent method (POST, LOCK, PATCH) are

not passed to the next server if a request has been sent to an upstream server;
enabling this option explicitly allows retrying such requests;

off disables passing a request to the next server.

ò Note

One should bear in mind that passing a request to the next server is only possible if nothing has
been sent to a client yet. That is, if an error or timeout occurs in the middle of the transferring of a
response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt of communication with a server.

error
timeout
invalid_header

always considered unsuccessful attempts, even if they are not specified in the
directive

http_500
http_503
http_429

considered unsuccessful attempts only if they are specified in the directive

http_403
http_404

never considered unsuccessful attempts

Passing a request to the next server can be limited by the number of tries and by time.

uwsgi_next_upstream_timeout

Syntax uwsgi_next_upstream_timeout time;
Default uwsgi_next_upstream_timeout 0;
Context http, server, location

Limits the time during which a request can be passed to the next server.

3.2. References and Indexes 275

https://datatracker.ietf.org/doc/html/rfc7231#section-4-2-2

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

0 turns off this limitation

uwsgi_next_upstream_tries

Syntax uwsgi_next_upstream_tries number ;
Default uwsgi_next_upstream_tries 0;
Context http, server, location

Limits the number of possible tries for passing a request to the next server.

0 turns off this limitation

uwsgi_no_cache

Syntax uwsgi_no_cache string ...;
Default —
Context http, server, location

Defines conditions under which the response will not be saved to a cache. If at least one value of the
string parameters is not empty and is not equal to "0" then the response will not be saved:

uwsgi_no_cache $cookie_nocache $arg_nocache$arg_comment;
uwsgi_no_cache $http_pragma $http_authorization;

Can be used along with the uwsgi_cache_bypass directive.

uwsgi_param

Syntax uwsgi_param parameter value [if_not_empty];
Default —
Context http, server, location

Sets a parameter that should be passed to the uwsgi server. The value can contain text, variables, and
their combination. These directives are inherited from the previous configuration level if and only if
there are no uwsgi_param directives defined on the current level.

Standard CGI environment variables should be provided as uwsgi headers, see the uwsgi_params file
provided in the distribution:

location / {
include uwsgi_params;

...
}

If the directive is specified with if_not_empty then such a parameter will be passed to the server only
if its value is not empty:

uwsgi_param HTTPS $https if_not_empty;

3.2. References and Indexes 276

https://datatracker.ietf.org/doc/html/rfc3875#section-4.1

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

uwsgi_pass

Syntax uwsgi_pass [protocol ://] address;
Default —
Context location, if in location

Sets the protocol and address of a uwsgi server. As a protocol, uwsgi or suwsgi (secured uwsgi, uwsgi
over SSL) can be specified. The address can be specified as a domain name or IP address, and a port:

uwsgi_pass localhost:9000;
uwsgi_pass uwsgi://localhost:9000;
uwsgi_pass suwsgi://[2001:db8::1]:9090;

or as a UNIX domain socket path:

uwsgi_pass unix:/tmp/uwsgi.socket;

If a domain name resolves to several addresses, all of them will be used in a round-robin fashion. In
addition, an address can be specified as a server group.

Parameter value can contain variables. In this case, if an address is specified as a domain name, the
name is searched among the described server groups, and, if not found, is determined using a resolver .

uwsgi_pass_header

Syntax uwsgi_pass_header field ...;
Default —
Context http, server, location

Permits passing otherwise disabled header fields from a uwsgi server to a client.

uwsgi_pass_request_body

Syntax uwsgi_pass_request_body on | off;
Default uwsgi_pass_request_body on;
Context http, server, location

Indicates whether the original request body is passed to the uwsgi server. See also the
uwsgi_pass_request_headers directive.

uwsgi_pass_request_headers

Syntax uwsgi_pass_request_headers on | off;
Default uwsgi_pass_request_headers on;
Context http, server, location

Indicates whether the header fields of the original request are passed to the uwsgi server. See also the
uwsgi_pass_request_body directive.

3.2. References and Indexes 277

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

uwsgi_read_timeout

Syntax uwsgi_read_timeout time;
Default uwsgi_read_timeout 60s;
Context http, server, location

Defines a timeout for reading a response from the uwsgi server. The timeout is set only between two
successive read operations, not for the transmission of the whole response. If the uwsgi server does not
transmit anything within this time, the connection is closed.

uwsgi_request_buffering

Syntax uwsgi_request_buffering on | off;
Default uwsgi_request_buffering on;
Context http, server, location

Enables or disables buffering of a client request body.

on the entire request body is read from the client before sending the request to a
uwsgi server.

off the request body is sent to the uwsgi server immediately as it is received. In this
case, the request cannot be passed to the next server if Angie already started
sending the request body.

When HTTP/1.1 chunked transfer encoding is used to send the original request body, the request body
will be buffered regardless of the directive value.

uwsgi_send_timeout

Syntax uwsgi_send_timeout time;
Default uwsgi_send_timeout 60s;
Context http, server, location

Sets a timeout for transmitting a request to the uwsgi server. The timeout is set only between two
successive write operations, not for the transmission of the whole request. If the uwsgi server does not
receive anything within this time, the connection is closed.

uwsgi_socket_keepalive

Syntax uwsgi_socket_keepalive on | off;
Default uwsgi_socket_keepalive off;
Context http, server, location

Configures the "TCP keepalive" behavior for outgoing connections to a uwsgi server.

off By default, the operating system's settings are in effect for the socket.
on The SO_KEEPALIVE socket option is turned on for the socket.

3.2. References and Indexes 278

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

uwsgi_ssl_certificate

Syntax uwsgi_ssl_certificate file;
Default —
Context http, server, location

Specifies a file with the certificate in the PEM format used for authentication to a secured uwsgi server.
Variables can be used in the file name.

uwsgi_ssl_certificate_cache

Syntax uwsgi_ssl_certificate_cache off;
uwsgi_ssl_certificate_cache max=N [inactive=time] [valid=time];

Default uwsgi_ssl_certificate_cache off;
Context http, server, location

Defines a cache that stores SSL certificates and secret keys specified using variables.

The directive supports the following parameters:

• max — sets the maximum number of elements in the cache. When the cache overflows, the least
recently used (LRU) elements are removed.

• inactive — defines the time after which an element is removed if it has not been accessed. The
default is 10 seconds.

• valid — defines the time during which a cached element is considered valid and can be reused.
The default is 60 seconds. After this period, certificates are reloaded or revalidated.

• off — disables the cache.

Example:

uwsgi_ssl_certificate $uwsgi_ssl_server_name.crt;
uwsgi_ssl_certificate_key $uwsgi_ssl_server_name.key;
uwsgi_ssl_certificate_cache max=1000 inactive=20s valid=1m;

uwsgi_ssl_certificate_key

Syntax uwsgi_ssl_certificate_key file;
Default —
Context http, server, location

Specifies a file with the secret key in the PEM format used for authentication to a secured uwsgi server.

The value engine:`name`:id can be specified instead of the file, which loads a secret key with a specified
id from the OpenSSL engine name.

Variables can be used in the file name.

uwsgi_ssl_ciphers

Syntax uwsgi_ssl_ciphers ciphers;
Default uwsgi_ssl_ciphers DEFAULT;
Context http, server, location

3.2. References and Indexes 279

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Specifies the enabled ciphers for requests to a secured uwsgi server. The ciphers are specified in the
format understood by the OpenSSL library.

The list of ciphers depends on the version of OpenSSL installed. The full list can be viewed using the
openssl ciphers command.

. Attention

The uwsgi_ssl_ciphers directive does not configure ciphers for TLS 1.3 when using OpenSSL. To
tune TLS 1.3 ciphers with OpenSSL, use the uwsgi_ssl_conf_command directive, which was added
to support advanced SSL configuration.

• In LibreSSL, TLS 1.3 ciphers can be configured using uwsgi_ssl_ciphers.

• In BoringSSL, TLS 1.3 ciphers cannot be configured at all.

uwsgi_ssl_conf_command

Syntax uwsgi_ssl_conf_command name value;
Default —
Context http, server, location

Sets arbitrary OpenSSL configuration commands when establishing a connection with the secured uwsgi
server.

s Important

The directive is supported when using OpenSSL 1.0.2 or higher. To configure TLS 1.3 ciphers with
OpenSSL, use the ciphersuites command.

Several uwsgi_ssl_conf_command directives can be specified on the same level. These directives are
inherited from the previous configuration level if and only if there are no uwsgi_ssl_conf_command
directives defined on the current level.

³ Caution

Note that configuring OpenSSL directly might result in unexpected behavior.

uwsgi_ssl_crl

Syntax uwsgi_ssl_crl file;
Default —
Context http, server, location

Specifies a file with revoked certificates (CRL) in the PEM format used to verify the certificate of the
secured uwsgi server.

uwsgi_ssl_name

Syntax uwsgi_ssl_name name;
Default uwsgi_ssl_name `host from uwsgi_pass;`
Context http, server, location

3.2. References and Indexes 280

https://docs.openssl.org/master/man3/SSL_CONF_cmd/

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Allows overriding the server name used to verify the certificate of the secured uwsgi server and to be
passed through SNI when establishing a connection with the secured uwsgi server.

By default, the host part of the uwsgi_pass URL is used.

uwsgi_ssl_password_file

Syntax uwsgi_ssl_password_file file;
Default —
Context http, server, location

Specifies a file with passphrases for secret keys where each passphrase is specified on a separate line.
Passphrases are tried in turn when loading the key.

uwsgi_ssl_protocols

Syntax uwsgi_ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1] [TLSv1.2] [TLSv1.3];
Default uwsgi_ssl_protocols TLSv1.2 TLSv1.3;
Context http, server, location

Changed in version 1.2.0: TLSv1.3 parameter added to default set.

Enables the specified protocols for requests to a secured uwsgi server.

uwsgi_ssl_server_name

Syntax uwsgi_ssl_server_name on | off;
Default uwsgi_ssl_server_name off;
Context http, server, location

Enables or disables passing the server name set by the uwsgi_ssl_name directive via the Server Name
Indication TLS extension (SNI, RFC 6066) while establishing a connection with the secured uwsgi server.

uwsgi_ssl_session_reuse

Syntax uwsgi_ssl_session_reuse on | off;
Default uwsgi_ssl_session_reuse on;
Context http, server, location

Determines whether SSL sessions can be reused when working with the uwsgi server. If the errors
"SSL3_GET_FINISHED:digest check failed" appear in the logs, try disabling session reuse.

uwsgi_ssl_trusted_certificate

Syntax uwsgi_ssl_trusted_certificate file;
Default —
Context http, server, location

Specifies a file with trusted CA certificates in the PEM format used to verify the certificate of the secured
uwsgi server.

3.2. References and Indexes 281

http://en.wikipedia.org/wiki/Server_Name_Indication
http://en.wikipedia.org/wiki/Server_Name_Indication
https://datatracker.ietf.org/doc/html/rfc6066.html

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

uwsgi_ssl_verify

Syntax uwsgi_ssl_verify on | off;
Default uwsgi_ssl_verify off;
Context http, server, location

Enables or disables verification of the secured uwsgi server certificate.

uwsgi_ssl_verify_depth

Syntax uwsgi_ssl_verify_depth number ;
Default uwsgi_ssl_verify_depth 1;
Context http, server, location

Sets the verification depth in the secured uwsgi server certificates chain.

uwsgi_store

Syntax uwsgi_store on | off | string ;
Default uwsgi_store off;
Context http, server, location

Enables saving of files to a disk.

on saves files with paths corresponding to the directives alias or root
off disables saving of files

The file name can be set explicitly using the string with variables:

uwsgi_store /data/www$original_uri;

The modification time of files is set according to the received "Last-Modified" response header field.
The response is first written to a temporary file, and then the file is renamed. Temporary files and the
persistent store can be put on different file systems. However, be aware that in this case a file is copied
across two file systems instead of the cheap renaming operation. It is thus recommended that for any
given location both saved files and a directory holding temporary files, set by the uwsgi_temp_path
directive, are put on the same file system.

This directive can be used to create local copies of static unchangeable files, e.g.:

location /images/ {
root /data/www;
error_page 404 = /fetch$uri;

}

location /fetch/ {
internal;

uwsgi_pass backend:9000;
...

uwsgi_store on;
uwsgi_store_access user:rw group:rw all:r;
uwsgi_temp_path /data/temp;

3.2. References and Indexes 282

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

alias /data/www/;
}

uwsgi_store_access

Syntax uwsgi_store_access users:permissions ...;
Default uwsgi_store_access user:rw;
Context http, server, location

Sets access permissions for newly created files and directories, e.g.:

uwsgi_store_access user:rw group:rw all:r;

If any group or all access permissions are specified then user permissions may be omitted:

uwsgi_store_access group:rw all:r;

uwsgi_temp_file_write_size

Syntax uwsgi_temp_file_write_size size;
Default uwsgi_temp_file_write_size 8k|16k;
Context http, server, location

Limits the size of data written to a temporary file at a time, when buffering of responses from the
uwsgi server to temporary files is enabled. By default, size is limited by two buffers set by the
uwsgi_buffer_size and uwsgi_buffers directives. The maximum size of a temporary file is set by the
uwsgi_max_temp_file_size directive.

uwsgi_temp_path

Syntax uwsgi_temp_path path [level1 [level2 [level3]]]`;
Default uwsgi_temp_path uwsgi_temp; (the path depends on the

--http-uwsgi-temp-path build option)
Context http, server, location

Defines a directory for storing temporary files with data received from uwsgi servers. Up to three-level
subdirectory hierarchy can be used underneath the specified directory. For example, in the following
configuration

uwsgi_temp_path /spool/angie/uwsgi_temp 1 2;

a temporary file might look like this:

/spool/angie/uwsgi_temp/7/45/00000123457

See also the use_temp_path parameter of the uwsgi_cache_path directive.

HTTP/2

Provides support for HTTP/2.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_v2_module build option.

3.2. References and Indexes 283

https://datatracker.ietf.org/doc/html/rfc9113

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

In packages and images from our repos, the module is included in the build.

Configuration Example

server {
listen 443 ssl;

http2 on;

ssl_certificate server.crt;
ssl_certificate_key server.key;

}

s Important

Note that accepting HTTP/2 connections over TLS requires the "Application-Layer Protocol Nego-
tiation" (ALPN) TLS extension support, which is available since OpenSSL version 1.0.2.

If the ssl_prefer_server_ciphers directive is set to the value "on", the ciphers should be configured to
comply with RFC 9113, Appendix A black list and supported by clients.

Directives

http2

Added in version 1.2.0.

Syntax http2 on | off;
Default http2 off;
Context http, server

Enables the HTTP/2 protocol.

http2_body_preread_size

Syntax http2_body_preread_size size;
Default —
Context http, server

Sets the size of the buffer per each request in which the request body may be saved before it is started
to be processed.

http2_chunk_size

Syntax http2_chunk_size size;
Default http2_chunk_size 8k;
Context http, server, location

Sets the maximum size of chunks into which the response body is sliced. A too low value results in higher
overhead. A too high value impairs prioritization due to HOL blocking.

3.2. References and Indexes 284

http://www.openssl.org/
https://datatracker.ietf.org/doc/html/rfc9113#appendix-A
https://datatracker.ietf.org/doc/html/rfc9113
http://en.wikipedia.org/wiki/Head-of-line_blocking

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

http2_max_concurrent_pushes

Deprecated since version 1.2.0.

Syntax http2_max_concurrent_pushes number ;
Default http2_max_concurrent_pushes 10;
Context http, server

Limits the maximum number of concurrent push requests in a connection.

http2_max_concurrent_streams

Syntax http2_max_concurrent_streams number ;
Default http2_max_concurrent_streams 128;
Context http, server

Sets the maximum number of concurrent HTTP/2 streams in a connection.

http2_push

Deprecated since version 1.2.0.

Syntax http2_push uri | off;
Default http2_push off;
Context http, server, location

Preemptively sends (pushes) a request to the specified uri along with the response to the original request.
Only relative URIs with absolute path will be processed, for example:

http2_push /static/css/main.css;

The uri value can contain variables.

Several http2_push directives can be specified on the same configuration level. The off parameter
cancels the effect of the http2_push directives inherited from the previous configuration level.

http2_push_preload

Deprecated since version 1.2.0.

Syntax http2_push_preload on | off;
Default http2_push_preload off;
Context http, server, location

Enables automatic conversion of preload links specified in the "Link" response header fields into push
requests.

http2_recv_buffer_size

Syntax http2_recv_buffer_size size;
Default http2_recv_buffer_size 256k;
Context http

Sets the size of the per worker input buffer.

3.2. References and Indexes 285

https://datatracker.ietf.org/doc/html/rfc9113#name-server-push
https://www.w3.org/TR/preload/#server-push-http-2
https://datatracker.ietf.org/doc/html/rfc9113#name-server-push

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Built-in Variables

The http_v2 module supports the following built-in variables:

$http2

negotiated protocol identifier:

h2 for HTTP/2 over TLS
h2c for HTTP/2 over cleartext TCP
"" an empty string otherwise

HTTP/3

Provides HTTP/3 protocol support for client connections, as well as for connections with proxied servers
configured using the following Proxy module directives:

• proxy_http3_hq

• proxy_http3_max_concurrent_streams

• proxy_http3_max_table_capacity

• proxy_http3_stream_buffer_size

• proxy_http_version

• proxy_pass

• proxy_quic_active_connection_id_limit

• proxy_quic_gso

• proxy_quic_host_key

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_v3_module build option.

In packages and images from our repositories, the module is included in the build.

Configuration Example

http {
log_format quic '$remote_addr - $remote_user [$time_local] '

'"$request" $status $body_bytes_sent '
'"$http_referer" "$http_user_agent" "$http3"';

access_log logs/access.log quic;

server {
for better compatibility it's recommended
to use the same port for http/3 and https
listen 8443 quic reuseport;
listen 8443 ssl;

ssl_certificate certs/example.com.crt;
ssl_certificate_key certs/example.com.key;

location / {
used to advertise the availability of HTTP/3
add_header Alt-Svc 'h3=":8443"; ma=86400';

}

3.2. References and Indexes 286

https://datatracker.ietf.org/doc/html/rfc9114

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

}
}

s Important

Note that accepting HTTP/3 connections over TLS requires the TLSv1.3 protocol support, which is
available since OpenSSL version 1.1.1.

Directives

http3

Syntax http3 on | off;
Default http3 on;
Context http, server

Enables HTTP/3 protocol negotiation.

http3_hq

Syntax http3_hq on | off;
Default http3_hq off;
Context http, server

Enables HTTP/0.9 protocol negotiation used in QUIC interoperability tests.

. Attention

Enable this mode only to run specialized tests that explicitly require it.

http3_max_concurrent_streams

Syntax http3_max_concurrent_streams number ;
Default http3_max_concurrent_streams 128;
Context http, server

Initializes HTTP/3 and QUIC settings and sets the maximum number of concurrent HTTP/3 request
streams in a connection.

http3_max_table_capacity

Syntax http3_max_table_capacity number ;
Default http3_max_table_capacity 4096;
Context http, server

Sets the dynamic table capacity for server connections.

3.2. References and Indexes 287

http://www.openssl.org/
https://github.com/marten-seemann/quic-interop-runner
https://www.ietf.org/archive/id/draft-ietf-quic-qpack-20.html#name-dynamic-table

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ò Note

A similar proxy_http3_max_table_capacity directive does this for proxy connections. To avoid
errors, dynamic table usage is disabled when proxying with caching is enabled.

http3_stream_buffer_size

Syntax http3_stream_buffer_size size;
Default http3_stream_buffer_size 64k;
Context http, server

Sets the size of the buffer used for reading and writing of the QUIC streams.

quic_active_connection_id_limit

Syntax quic_active_connection_id_limit number ;
Default quic_active_connection_id_limit 2;
Context http, server

Sets the QUIC active_connection_id_limit transport parameter value. This is the maximum number
of connection IDs that can be stored on the server.

quic_bpf

Syntax quic_bpf on | off;
Default quic_bpf off;
Context main

Enables routing of QUIC packets using eBPF. When enabled, this allows supporting QUIC connection
migration.

s Important

The directive is only supported on Linux 5.7+.

quic_gso

Syntax quic_gso on | off;
Default quic_gso off;
Context http, server

Enables sending in optimized batch mode using segmentation offloading.

s Important

Optimized sending is supported only on Linux featuring UDP_SEGMENT.

3.2. References and Indexes 288

https://ebpf.io/

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

quic_host_key

Syntax quic_host_key file;
Default —
Context http, server

Sets a file with the secret key used to encrypt stateless reset and address validation tokens. By default,
a random key is generated on each reload. Tokens generated with old keys are not accepted.

quic_retry

Syntax quic_retry on | off;
Default quic_retry off;
Context http, server

Enables the QUIC Address Validation feature. This includes sending a new token in a Retry packet or
a NEW_TOKEN frame and validating a token received in the Initial packet.

Built-in Variables

The http_v3 module supports the following built-in variables:

$http3

negotiated protocol identifier:

h3 for HTTP/3 connections
hq for hq connections
"" an empty string otherwise

$quic_connection

QUIC connection serial number

XSLT

The module is a filter that transforms XML responses using one or more XSLT stylesheets.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-http_xslt_module build option.

In our repositories, the module is built dynamically and is available as a separate package named
angie-module-xslt or angie-pro-module-xslt.

s Important

This module requires the libxml2 and libxslt libraries.

Configuration Example

location / {
xml_entities /site/dtd/entities.dtd;
xslt_stylesheet /site/xslt/one.xslt param=value;

3.2. References and Indexes 289

https://datatracker.ietf.org/doc/html/rfc9000#name-address-validation
http://xmlsoft.org/
http://xmlsoft.org/XSLT/

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

xslt_stylesheet /site/xslt/two.xslt;
}

Directives

xml_entities

Syntax xml_entities path;
Default —
Context http, server, location

Specifies the DTD file that declares character entities. This file is compiled at the configuration stage.
For technical reasons, the module is unable to use the external subset declared in the processed XML, so
it is ignored and a specially defined file is used instead. This file should not describe the XML structure.
It is enough to declare just the required character entities, for example:

<!ENTITY nbsp " ">

xslt_last_modified

Syntax xslt_last_modified on | off;
Default xslt_last_modified off;
Context http, server, location

Allows preserving the "Last-Modified" header field from the original response during XSLT transforma-
tions to facilitate response caching.

By default, the header field is removed as contents of the response are modified during transformations
and may contain dynamically generated elements or parts that are changed independently of the original
response.

xslt_param

Syntax xslt_param parameter value;
Default —
Context http, server, location

Defines the parameters for XSLT stylesheets. The value is treated as an XPath expression. The value
can contain variables. To pass a string value to a stylesheet, the xslt_string_param directive can be
used.

There could be several xslt_param directives. These directives are inherited from the previous configura-
tion level if and only if there are no xslt_param and xslt_string_param directives defined on the current
level.

xslt_string_param

Syntax xslt_string_param parameter value;
Default —
Context http, server, location

Defines the string parameters for XSLT stylesheets. XPath expressions in the value are not interpreted.
The value can contain variables.

3.2. References and Indexes 290

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

There could be several xslt_string_param directives. These directives are inherited from the previous
configuration level if and only if there are no xslt_param and xslt_string_param directives defined on
the current level.

xslt_stylesheet

Syntax xslt_stylesheet stylesheet [parameter=value ...];
Default —
Context location

Defines the XSLT stylesheet and its optional parameters. A stylesheet is compiled at the configuration
stage.

Parameters can either be specified separately, or grouped in a single line using the ":" delimiter. If a
parameter includes the ":" character, it should be escaped as "%3A". Also, libxslt requires to enclose
parameters that contain non-alphanumeric characters into single or double quotes, for example:

param1='http%3A//www.example.com':param2=value2

The parameters description can contain variables, for example, the whole line of parameters can be taken
from a single variable:

location / {
xslt_stylesheet /site/xslt/one.xslt

$arg_xslt_params
param1='$value1':param2=value2
param3=value3;

}

It is possible to specify several stylesheets. They will be applied sequentially in the specified order.

xslt_types

Syntax xslt_types mime-type ...;
Default xslt_types text/xml;
Context http, server, location

Enables transformations in responses with the specified MIME types in addition to text/xml. The
special value "*" matches any MIME type. If the transformation result is an HTML response, its MIME
type is changed to text/html.

The core HTTP module implements the basic functionality of an HTTP server: this includes defin-
ing server blocks, configuring locations for request routing, serving static files and controlling access,
configuring redirects, supporting keep-alive connections, and managing request and response headers.

The other modules in this section extend this functionality, allowing you to flexibly configure and optimize
the HTTP server for various scenarios and requirements.

Directives

absolute_redirect

Syntax absolute_redirect on | off;
Default absolute_redirect on;
Context http, server, location

3.2. References and Indexes 291

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

If disabled, redirects issued by Angie will be relative.

See also server_name_in_redirect and port_in_redirect directives.

aio

Syntax aio on | off | threads [=pool];
Default aio off;
Context http, server, location

Enables or disables the use of asynchronous file I/O (AIO) on FreeBSD and Linux:

location /video/ {
aio on;
output_buffers 1 64k;

}

On FreeBSD, AIO can be used starting from FreeBSD 4.3. Prior to FreeBSD 11.0, AIO can either be
linked statically into a kernel:

options VFS_AIO

or loaded dynamically as a kernel loadable module:

kldload aio

On Linux, AIO can be used starting from kernel version 2.6.22. Also, it is necessary to enable directio,
or otherwise reading will be blocking:

location /video/ {
aio on;
directio 512;
output_buffers 1 128k;

}

On Linux, directio can only be used for reading blocks that are aligned on 512-byte boundaries (or 4K
for XFS). File's unaligned end is read in blocking mode. The same holds true for byte range requests
and for FLV requests not from the beginning of a file: reading of unaligned data at the beginning and
end of a file will be blocking.

When both AIO and sendfile are enabled on Linux, AIO is used for files that are larger than or equal to
the size specified in the directio directive, while sendfile is used for files of smaller sizes or when directio
is disabled:

location /video/ {
sendfile on;
aio on;
directio 8m;

}

Finally, files can be read and sent using multi-threading, without blocking a worker process:

location /video/ {
sendfile on;
aio threads;

}

Read and send file operations are offloaded to threads of the specified pool . If the pool name is omitted,
the pool with the name "default" is used. The pool name can also be set with variables:

3.2. References and Indexes 292

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

aio threads=pool$disk;

By default, multi-threading is disabled, it should be enabled with the --with-threads configuration pa-
rameter. Currently, multi-threading is compatible only with the epoll , kqueue, and eventport methods.
Multi-threaded sending of files is only supported on Linux.

See also the sendfile directive.

aio_write

Syntax aio_write on | off;
Default aio_write off;
Context http, server, location

If aio is enabled, specifies whether it is used for writing files. Currently, this only works when using aio
threads and is limited to writing temporary files with data received from proxied servers.

alias

Syntax alias path;
Default —
Context location

Defines a replacement for the specified location. For example, with the following configuration:

location /i/ {
alias /data/w3/images/;

}

on request of /i/top.gif, the file /data/w3/images/top.gif will be sent.

The path value can contain variables, except $document_root and $realpath_root .

If alias is used inside a location defined with a regular expression then such regular expression should
contain captures and alias should refer to these captures, for example:

location ~ ^/users/(.+\.(?:gif|jpe?g|png))$ {
alias /data/w3/images/$1;

}

When location matches the last part of the directive's value:

location /images/ {
alias /data/w3/images/;

}

it is better to use the root directive instead:

location /images/ {
root /data/w3;

}

3.2. References and Indexes 293

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

auth_delay

Syntax auth_delay time;
Default auth_delay 0s;
Context http, server, location

Delays processing of unauthorized requests with 401 response code to prevent timing attacks when access
is limited by password or by the result of subrequest .

auto_redirect

Syntax auto_redirect [on | off | default];
Default auto_redirect default;
Context http, server, location

Controls the redirection behavior when a prefix location ends with a slash:

location /prefix/ {
auto_redirect on;

}

Here, a request for /prefix causes a redirect to /prefix/.

The value on explicitly enables redirection, while off disables it. When set to default, redirection is
enabled only if the location processes requests with api , proxy_pass, fastcgi_pass, uwsgi_pass, scgi_pass,
memcached_pass, or grpc_pass.

chunked_transfer_encoding

Syntax chunked_transfer_encoding on | off;
Default chunked_transfer_encoding on;
Context http, server, location

Allows disabling chunked transfer encoding in HTTP/1.1. It may come in handy when using a software
failing to support chunked encoding despite the standard's requirement.

client

Syntax client { ... }
Default —
Context http

Creates a client context for named locations that serve outgoing HTTP requests that Angie creates
itself, without involvement of a real client.

Locations defined in this context can only be used in the following ways:

• requests to the ACME directory in the ACME module via the predefined location @acme, which
can be additionally configured using Proxy module directives;

• requests for events and containers to the Docker API in the Docker module via the predefined
location @docker_events and @docker_containers, which can be additionally configured using
Proxy module directives;

• sticky learn mode with remote_action in the Upstream module.

3.2. References and Indexes 294

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Only one client context can exist in the configuration.

client_body_buffer_size

Syntax client_body_buffer_size size;
Default client_body_buffer_size 8k|16k;
Context http, server, location

Sets buffer size for reading client request body. In case the request body is larger than the buffer, the
whole body or only its part is written to a temporary file. By default, buffer size is equal to two memory
pages. This is 8K on x86, other 32-bit platforms, and x86-64. It is usually 16K on other 64-bit platforms.

client_body_in_file_only

Syntax client_body_in_file_only on | clean | off;
Default client_body_in_file_only off;
Context http, server, location

Determines whether Angie should save the entire client request body into a file. This directive can be
used during debugging, or when using the $request_body_file variable, or the $r->request_body_file
method of the Perl module.

on temporary files are not removed after request processing
clean will cause the temporary files left after request processing to be removed

client_body_in_single_buffer

Syntax client_body_in_single_buffer on | off;
Default client_body_in_single_buffer off;
Context http, server, location

Determines whether Angie should save the entire client request body in a single buffer. The directive is
recommended when using the $request_body variable, to save the number of copy operations involved.

client_body_temp_path

Syntax client_body_temp_path path [level1 [level2 [level3]]];
Default client_body_temp_path client_body_temp; (the path depends on the

--http-client-body-temp-path build option)
Context http, server, location

Defines a directory for storing temporary files holding client request bodies. Up to three-level subdirectory
hierarchy can be used under the specified directory. For example, in the following configuration

client_body_temp_path /spool/angie/client_temp 1 2;

a path to a temporary file might look like this:

/spool/angie/client_temp/7/45/00000123457

3.2. References and Indexes 295

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

client_body_timeout

Syntax client_body_timeout time;
Default client_body_timeout 60s;
Context http, server, location

Defines a timeout for reading client request body. The timeout is set only for a period between two
successive read operations, not for the transmission of the whole request body. If a client does not
transmit anything within this time, the request is terminated with the 408 (Request Time-out) error.

client_header_buffer_size

Syntax client_header_buffer_size size;
Default client_header_buffer_size 1k;
Context http, server

Sets buffer size for reading client request header. For most requests, a buffer of 1K bytes is enough.
However, if a request includes long cookies, or comes from a WAP client, it may not fit into 1K. If a
request line or a request header field does not fit into this buffer then larger buffers, configured by the
large_client_header_buffers directive, are allocated.

If the directive is specified on the server level, the value from the default server can be used. Details are
provided in the Virtual server selection section.

client_header_timeout

Syntax client_header_timeout time;
Default client_header_timeout 60s;
Context http, server

Defines a timeout for reading client request header. If a client does not transmit the entire header within
this time, the request is terminated with the 408 (Request Time-out) error.

client_max_body_size

Syntax client_max_body_size size;
Default client_max_body_size 1m;
Context http, server, location

Sets the maximum allowed size of the client request body. If the size in a request exceeds the configured
value, the 413 (Request Entity Too Large) error is returned to the client. Please be aware that browsers
cannot correctly display this error.

0 disables checking of client request body size

connection_pool_size

Syntax connection_pool_size size;
Default connection_pool_size 256 | 512;
Context http, server, location

3.2. References and Indexes 296

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Allows accurate tuning of per-connection memory allocations. This directive has minimal impact on
performance and should not generally be used. By default:

256 (bytes) 32-bit platforms
512 (bytes) 64-bit platforms

default_type

Syntax default_type mime-type;
Default default_type text/plain;
Context http, server, location

Defines the default MIME type of a response. Mapping of file name extensions to MIME types can be
set with the types directive.

directio

Syntax directio size | off;
Default directio off;
Context http, server, location

Enables the use of the O_DIRECT flag (FreeBSD, Linux), the F_NOCACHE flag (macOS), or the directio()
function (Solaris), when reading files that are larger than or equal to the specified size. The directive
automatically disables the use of sendfile for a given request. It can be useful for serving large files:

directio 4m;

or when using aio on Linux.

directio_alignment

Syntax directio_alignment size;
Default directio_alignment 512;
Context http, server, location

Sets the alignment for directio. In most cases, a 512-byte alignment is enough. However, when using
XFS under Linux, it needs to be increased to 4K.

disable_symlinks

Syntax disable_symlinks off;
disable_symlinks on | if_not_owner [from=part];

Default disable_symlinks off;
Context http, server, location

Determines how symbolic links should be treated when opening files:

3.2. References and Indexes 297

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

off Symbolic links in the pathname are allowed and not checked. This is the default
behavior.

on If any component of the pathname is a symbolic link, access to a file is denied.
if_not_owner Access to a file is denied if any component of the pathname is a symbolic link,

and the link and object that the link points to have different owners.
from=part When checking symbolic links (parameters on and if_not_owner), all compo-

nents of the pathname are normally checked. Checking of symbolic links in
the initial part of the pathname may be avoided by specifying additionally the
from=part parameter. In this case, symbolic links are checked only from the
pathname component that follows the specified initial part. If the value is not
an initial part of the pathname checked, the whole pathname is checked as if this
parameter was not specified at all. If the value matches the whole file name,
symbolic links are not checked. The parameter value can contain variables.

Example:

disable_symlinks on from=$document_root;

This directive is only available on systems that have the openat() and fstatat() interfaces. Such
systems include modern versions of FreeBSD, Linux, and Solaris.

. Warning

Parameters on and if_not_owner add a processing overhead.

On systems that do not support opening of directories only for search, to use these parameters it is
required that worker processes have read permissions for all directories being checked.

ò Note

The AutoIndex , Random Index , and DAV modules currently ignore this directive.

error_page

Syntax error_page code ... [=[response]] uri ;
Default —
Context http, server, location, if in location

Defines the URI that will be shown for the specified errors. A uri value can contain variables.

Example:

error_page 404 /404.html;
error_page 500 502 503 504 /50x.html;

This causes an internal redirect to the specified uri with the client request method changed to "GET"
(for all methods other than "GET" and "HEAD").

Furthermore, it is possible to change the response code to another using the =response syntax, for
example:

error_page 404 =200 /empty.gif;

3.2. References and Indexes 298

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

If an error response is processed by a proxied server or a FastCGI/uwsgi/SCGI/gRPC server, and the
server may return different response codes (e.g., 200, 302, 401 or 404), it is possible to respond with the
code it returns:

error_page 404 = /404.php;

If there is no need to change URI and method during internal redirection it is possible to pass error
processing into a named location:

location / {
error_page 404 = @fallback;

}

location @fallback {
proxy_pass http://backend;

}

ò Note

If uri processing leads to an error, the status code of the last occurred error is returned to the client.

It is also possible to use URL redirects for error processing:

error_page 403 http://example.com/forbidden.html;
error_page 404 =301 http://example.com/notfound.html;

In this case, by default, the response code 302 is returned to the client. It can only be changed to one
of the redirect status codes (301, 302, 303, 307, and 308).

etag

Syntax etag on | off;
Default etag on;
Context http, server, location

Enables or disables automatic generation of the "ETag" response header field for static resources.

http

Syntax http { ... }
Default —
Context main

Provides the configuration file context in which the HTTP server directives are specified.

if_modified_since

Syntax if_modified_since off | exact | before;
Default if_modified_since exact;
Context http, server, location

Specifies how to compare modification time of a response with the time in the "If-Modified-Since" request
header field:

3.2. References and Indexes 299

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

off the response is always considered modified
exact exact match
before modification time of the response is less than or equal to the time in the "If-

Modified-Since" request header field

ignore_invalid_headers

Syntax ignore_invalid_headers on | off;
Default ignore_invalid_headers on;
Context http, server

Controls whether header fields with invalid names should be ignored. Valid names are composed of
English letters, digits, hyphens, and possibly underscores (as controlled by the underscores_in_headers
directive).

If the directive is specified on the server level, the value from the default server can be used.

internal

Syntax internal;
Default —
Context location

Specifies that a given location can only be used for internal requests. For external requests, the client
error 404 (Not Found) is returned. Internal requests are the following:

• requests redirected by the error_page, index , random_index and try_files directives;

• requests redirected by the X-Accel-Redirect response header field from an upstream server;

• subrequests formed by the include virtual command of the http_ssi module, by the http_addition
module directives, and by auth_request and mirror directives;

• requests changed by the rewrite directive.

Example:

error_page 404 /404.html;

location = /404.html {
internal;

}

ò Note

There is a limit of 10 internal redirects per request to prevent request processing cycles that can occur
in incorrect configurations. If this limit is reached, the error 500 (Internal Server Error) is returned.
In such cases, the rewrite or internal redirection cycle message can be seen in the error log.

keepalive_disable

Syntax keepalive_disable none | browser ...;
Default keepalive_disable msie6;
Context http, server, location

3.2. References and Indexes 300

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Disables keep-alive connections with misbehaving browsers. The browser parameters specify which
browsers will be affected.

none enables keep-alive connections with all browsers
msie6 disables keep-alive connections with old versions of MSIE, once a POST request

is received
safari disables keep-alive connections with Safari and Safari-like browsers on macOS

and macOS-like operating systems

keepalive_requests

Syntax keepalive_requests number ;
Default keepalive_requests 1000;
Context http, server, location

Sets the maximum number of requests that can be served through one keep-alive connection. After the
maximum number of requests are made, the connection is closed.

Closing connections periodically is necessary to free per-connection memory allocations. Therefore, using
too high maximum number of requests could result in excessive memory usage and is not recommended.

keepalive_time

Syntax keepalive_time time;
Default keepalive_time 1h;
Context http, server, location

Limits the maximum time during which requests can be processed through one keep-alive connection.
After this time is reached, the connection is closed following the subsequent request processing.

keepalive_timeout

Syntax keepalive_timeout timeout [header_timeout];
Default keepalive_timeout 75s;
Context http, server, location

timeout sets a timeout during which a keep-alive client connection will stay open on the
server side

0 disables keep-alive client connections

The optional second parameter sets a value in the "Keep-Alive: timeout=time" response header field.
Two parameters may differ.

The "Keep-Alive: timeout=time" header field is recognized by Mozilla and Konqueror. MSIE closes
keep-alive connections by itself in about 60 seconds.

large_client_header_buffers

Syntax large_client_header_buffers number size;
Default large_client_header_buffers 4 8k;
Context http, server

3.2. References and Indexes 301

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Sets the maximum number and size of buffers used for reading large client request header. A request
line cannot exceed the size of one buffer, or the 414 (Request-URI Too Large) error is returned to the
client. A request header field cannot exceed the size of one buffer as well, or the 400 (Bad Request) error
is returned to the client. Buffers are allocated only on demand. By default, the buffer size is equal to 8K
bytes. If after the end of request processing a connection is transitioned into the keep-alive state, these
buffers are released.

If the directive is specified on the server level, the value from the default server can be used.

limit_except

Syntax limit_except method1 [method2...] { ... };
Default —
Context location

Limits allowed HTTP methods inside a location. The method parameter can be one of the following:
GET, HEAD, POST, PUT, DELETE, MKCOL, COPY, MOVE, OPTIONS, PROPFIND, PROPPATCH, LOCK, UNLOCK, or
PATCH. Allowing the GET method makes the HEAD method also allowed. Access to other methods can be
limited using the Access and Auth Basic module directives:

limit_except GET {
allow 192.168.1.0/32;
deny all;

}

ò Note

The restriction in this example applies to all methods except GET and HEAD.

limit_rate

Syntax limit_rate rate;
Default limit_rate 0;
Context http, server, location, if in location

Limits the rate of response transmission to a client. The rate is specified in bytes per second. The zero
value disables rate limiting. The limit is set per a request, and so if a client simultaneously opens two
connections, the overall rate will be twice as much as the specified limit.

Parameter value can contain variables. It may be useful in cases where rate should be limited depending
on a certain condition:

map $slow $rate {
1 4k;
2 8k;

}

limit_rate $rate;

Rate limit can also be set in the $limit_rate variable, however, this method is not recommended:

server {

if ($slow) {
set $limit_rate 4k;

3.2. References and Indexes 302

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

}

}

Rate limit can also be set in the "X-Accel-Limit-Rate" header field of a proxied server re-
sponse. This capability can be disabled using the proxy_ignore_headers, fastcgi_ignore_headers,
uwsgi_ignore_headers, and scgi_ignore_headers directives.

limit_rate_after

Syntax limit_rate_after size;
Default limit_rate_after 0;
Context http, server, location, if in location

Sets the initial amount after which the further transmission of a response to a client will be rate limited.
Parameter value can contain variables.

Example:

location /flv/ {
flv;
limit_rate_after 500k;
limit_rate 50k;

}

lingering_close

Syntax lingering_close on | always | off;
Default lingering_close on;
Context http, server, location

Controls how Angie closes client connections.

on instructs Angie to wait for and process additional data from a client before fully
closing a connection, but only if heuristics suggests that a client may be sending
more data.

always will cause Angie to unconditionally wait for and process additional client data.
off tells Angie to never wait for more data and close the connection immediately. This

behavior breaks the protocol and should not be used under normal circumstances.

To control the closing of HTTP/2 connections, the directive must be specified on the server level.

lingering_time

Syntax lingering_time time;
Default lingering_time 30s;
Context http, server, location

When lingering_close is in effect, this directive specifies the maximum time during which Angie will
process (read and ignore) additional data coming from a client. After that, the connection will be closed,
even if there will be more data.

3.2. References and Indexes 303

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

lingering_timeout

Syntax lingering_timeout time;
Default lingering_timeout 5s;
Context http, server, location

When lingering_close is in effect, this directive specifies the maximum waiting time for more client data
to arrive. If data are not received during this time, the connection is closed. Otherwise, the data are read
and ignored, and Angie starts waiting for more data again. The "wait-read-ignore" cycle is repeated,
but no longer than specified by the lingering_time directive.

During graceful shutdown, client keep-alive connections are closed only if they have been inactive for at
least the time specified in lingering_timeout.

listen

Syntax listen address[:port] [default_server] [ssl] [http2 | quic] [proxy_protocol]
[setfib=number] [fastopen=number] [backlog=number] [rcvbuf=size]
[sndbuf=size] [accept_filter=filter] [deferred] [bind] [ipv6only=on | off]
[reuseport] [so_keepalive=on|off|[keepidle]:[samp:keepintvl]:[samp:keepcnt]];
listen port [default_server] [ssl] [http2 | quic] [proxy_protocol]
[setfib=number] [fastopen=number] [backlog=number] [rcvbuf=size]
[sndbuf=size] [accept_filter=filter] [deferred] [bind] [ipv6only=on | off]
[reuseport] [so_keepalive=on|off|[keepidle]:[samp:keepintvl]:[samp:keepcnt]];
listen unix:path [default_server] [ssl] [http2 | quic] [proxy_protocol]
[backlog=number] [rcvbuf=size] [sndbuf=size] [accept_filter=filter] [deferred]
[bind] [so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

Default listen *:80 | *:8000;
Context server

Sets the address and port for listen socket, or the path for a UNIX domain socket on which the server
will accept requests. An address may also be a hostname, for example:

listen 127.0.0.1:8000;
listen 127.0.0.1;
listen 8000;
listen *:8000;
listen localhost:8000;

IPv6 addresses are specified in square brackets:

listen [::]:8000;
listen [::1];

UNIX domain sockets are specified with the unix: prefix:

listen unix:/var/run/angie.sock;

Both address and port, or only address or port, can be specified. When some parts are omitted, the
behavior varies:

• If only the address is given, port 80 is used.

• If only the port is given, Angie listens on all available IPv4 (and IPv6, if enabled) interfaces. The
first defined server block for that port becomes the default for requests with an unmatched Host
header.

3.2. References and Indexes 304

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

• If the directive is omitted entirely, Angie uses *:80 when running with superuser privileges or
*:8000 otherwise.

default_server The server with this parameter specified will be the default server for the given
address:port pair (together they form a listening socket).
If there are no directives with the default_server parameter, the default server
for the listening socket will be the first server in the configuration that serves this
socket.

ssl allows specifying that all connections accepted on this port should work in SSL
mode. This allows for a more compact configuration for the server that handles
both HTTP and HTTPS requests.

http2 configures the port to accept HTTP/2 connections. Normally, for this to work
the ssl parameter should be specified as well, but Angie can also be configured
to accept HTTP/2 connections without SSL.
Deprecated since version 1.2.0.
Use the http2 directive instead.

quic configures the port to accept QUIC connections. To use this option, Angie must
have the HTTP3 module enabled and configured. With quic set, you can also
specify reuseport so multiple worker processes can be used.

proxy_protocol allows specifying that all connections accepted on this port should use the
PROXY protocol.

The listen directive can have several additional parameters specific to socket-related system calls. These
parameters can be specified in any listen directive, but only once for a given listening socket.

setfib=number this parameter sets the associated routing table, FIB (the SO_SETFIB option)
for the listening socket. This currently works only on FreeBSD.

fastopen=number enables "TCP Fast Open" for the listening socket and limits the maximum length
for the queue of connections that have not yet completed the three-way hand-
shake.

³ Caution

Do not enable this feature unless the server can handle receiving the same SYN packet with data
more than once.

3.2. References and Indexes 305

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

backlog=number sets the backlog parameter in the listen() call that limits the maximum length
for the queue of pending connections. By default, backlog is set to -1 on FreeBSD,
DragonFly BSD, and macOS, and to 511 on other platforms.

rcvbuf=size sets the receive buffer size (the SO_RCVBUF option) for the listening socket.
sndbuf=size sets the send buffer size (the SO_SNDBUF option) for the listening socket.
accept_filter=filtersets the name of accept filter (the SO_ACCEPTFILTER option) for the listening

socket that filters incoming connections before passing them to accept(). This
works only on FreeBSD and NetBSD 5.0+. Possible values are dataready and
httpready.

deferred instructs to use a deferred accept() (the TCP_DEFER_ACCEPT socket option) on
Linux.

bind instructs to make a separate bind() call for a given address:port pair. This is
useful because if there are several listen directives with the same port but dif-
ferent addresses, and one of the listen directives listens on all addresses for the
given port (*:port), Angie will bind() only to *:port. It should be noted that
the getsockname() system call will be made in this case to determine the ad-
dress that accepted the connection. If the setfib, fastopen, backlog, rcvbuf,
sndbuf, accept_filter, deferred, ipv6only, reuseport or so_keepalive pa-
rameters are used then for a given address:port pair a separate bind() call will
always be made.

ipv6only=on |
off

this parameter determines (via the IPV6_V6ONLY socket option) whether an IPv6
socket listening on a wildcard address [::] will accept only IPv6 connections or
both IPv6 and IPv4 connections. This parameter is turned on by default. It can
only be set once on start.

reuseport this parameter instructs to create an individual listening socket for each worker
process (using the SO_REUSEPORT socket option on Linux 3.9+ and DragonFly
BSD, or SO_REUSEPORT_LB on FreeBSD 12+), allowing a kernel to distribute
incoming connections between worker processes. This currently works only on
Linux 3.9+, DragonFly BSD, and FreeBSD 12+.

³ Caution

Inappropriate use of this option may have its security implications.

multipath enables accepting connections via Multipath TCP (MPTCP), supported in the
Linux kernel since version 5.6. This parameter is incompatible with quic.

so_keepalive=on | off | [keepidle]:[keepintvl]:[keepcnt]

Configures the "TCP keepalive" behavior for the listening socket.

'' if this parameter is omitted then the operating system's settings will be in effect
for the socket

on the SO_KEEPALIVE option is turned on for the socket
off the SO_KEEPALIVE option is turned off for the socket

Some operating systems support setting of TCP keepalive parameters on a per-socket basis using the
TCP_KEEPIDLE, TCP_KEEPINTVL, and TCP_KEEPCNT socket options. On such systems (currently, Linux
2.4+, NetBSD 5+, and FreeBSD 9.0-STABLE), they can be configured using the keepidle, keepintvl,
and keepcnt parameters. One or two parameters may be omitted, in which case the system default
setting for the corresponding socket option will be in effect. For example,

so_keepalive=30m::10

will set the idle timeout (TCP_KEEPIDLE) to 30 minutes, leave the probe interval (TCP_KEEPINTVL) at its
system default, and set the probes count (TCP_KEEPCNT) to 10 probes.

Example:

3.2. References and Indexes 306

https://en.wikipedia.org/wiki/Multipath_TCP

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

listen 127.0.0.1 default_server accept_filter=dataready backlog=1024;

location

Syntax location ([= | ~ | ~* | ^~] uri | @name)+ { ... }
Default —
Context server, location

Sets the configuration depending on whether the request URI matches any of the matching expressions.

The matching is performed against a normalized URI, after decoding the text encoded in the "%XX"
form, resolving references to relative path components "." and "..", and possible compression of two or
more adjacent slashes into a single slash.

A location can either be defined by a prefix string, or by a regular expression.

Regular expressions are specified with the preceding modifier:

~* Case-insensitive matching
~ Case-sensitive matching

To find a location that matches a request, Angie first checks the locations defined with prefix strings
(known as prefix locations). Among them, the location with the longest matching prefix is selected and
tentatively stored.

ò Note

For case-insensitive operating systems such as macOS, prefix string matching is case insensitive.
However, matching is limited to single-byte locales.

Then, regex-based locations are evaluated in order of their appearance in the configuration file. Their
evaluation stops at the first match, and the corresponding configuration is used. If no matching regex
location is found, Angie uses the configuration of the tentatively stored prefix location.

With some exceptions mentioned below, location blocks can be nested.

Regex locations may define capture groups that can later be used with other directives.

If the matching prefix location uses the ^~ modifier, regex locations aren't checked.

Also, the = modifier enables exact URI matching mode for a location; if an exact match is found, the
lookup stops. For example, if / requests are frequent, defining location =/ speeds up their processing
because the lookup stops at the exact match. Obviously, such locations can't contain nested locations.

Example:

location =/ {
#configuration A

}

location / {
#configuration B

}

location /documents/ {
#configuration C

}

3.2. References and Indexes 307

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

location ^~/images/ {
#configuration D

}

location ~*\.(gif|jpg|jpeg)$ {
#configuration E

}

• A / request matches configuration A,

• an /index.html request matches configuration B,

• a /documents/document.html request matches configuration C,

• an /images/1.gif request matches configuration D,

• and a /documents/1.jpg request matches configuration E.

ò Note

If a prefix location ends with a slash character and auto_redirect is enabled, the following occurs:
When a request arrives with the URI that has no trailing slash but otherwise matches the prefix
exactly, a permanent 301 code redirect is returned, pointing to the requested URI with the slash
appended.

With an exact URI-matching location, redirection isn't applied:

location /user/ {
proxy_pass http://user.example.com;

}

location =/user {
proxy_pass http://login.example.com;

}

The @ prefix defines a named location. Such locations aren't used for regular request processing, but
instead are only intended for request redirection. They cannot be nested and cannot contain nested
locations.

Combined locations

Several location contexts that define identical configuration blocks can be compacted by listing all their
matching expressions in a single location with a single configuration block. That's called a combined
location.

Suppose that configurations A, D, and E from the previous example define identical configurations; you
can combine them into one location:

location =/
^~/images/
~*\.(gif|jpg|jpeg)$ {

general configuration
}

A named location can also be a part of the combination:

location =/
@named_combined {

#...
}

3.2. References and Indexes 308

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

³ Caution

A combined location can't have a space between the matching expression and its modifier. Proper
form: location ~*/match(ing|es|er)$

ò Note

Currently, a combined location cannot immediately contain neither proxy_pass and similar di-
rectives with URI set, nor api or alias. However, these directives can be used by locations nested
inside a combined location.

log_not_found

Syntax log_not_found on | off;
Default log_not_found on;
Context http, server, location

Enables or disables logging of errors about not found files into error_log .

log_subrequest

Syntax log_subrequest on | off;
Default log_subrequest off;
Context http, server, location

Enables or disables logging of subrequests into access_log .

max_headers

Syntax max_headers number ;
Default max_headers 1000;
Context http, server

Sets the maximum number of client request header fields allowed. If this limit is exceeded, a 400 (Bad
Request) error is returned.

When this directive is set at the server level, the value from the default server may be applied. For more
information, refer to the Virtual server selection section.

max_ranges

Syntax max_ranges number ;
Default —
Context http, server, location

Limits the maximum allowed number of ranges in byte-range requests. Requests that exceed the limit
are processed as if there were no byte ranges specified. By default, the number of ranges is not limited.

0 disables the byte-range support completely

3.2. References and Indexes 309

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

merge_slashes

Syntax merge_slashes on | off;
Default merge_slashes on;
Context http, server

Enables or disables compression of two or more adjacent slashes in a URI into a single slash.

Note that compression is essential for the correct matching of prefix string and regular expression loca-
tions. Without it, the //scripts/one.php request would not match

location /scripts/ { }

and might be processed as a static file. So it gets converted to /scripts/one.php.

Turning the compression off can become necessary if a URI contains base64-encoded names, since base64
uses the "/" character internally. However, for security considerations, it is better to avoid turning the
compression off.

If the directive is specified on the server level, the value from the default server can be used.

msie_padding

Syntax msie_padding on | off;
Default msie_padding on;
Context http, server, location

Enables or disables adding comments to responses for MSIE clients with status greater than 400 to
increase the response size to 512 bytes.

msie_refresh

Syntax msie_refresh on | off;
Default msie_refresh off;
Context http, server, location

Enables or disables issuing refreshes instead of redirects for MSIE clients.

open_file_cache

Syntax open_file_cache off;
open_file_cache max=N [inactive=time];

Default open_file_cache off;
Context http, server, location

Configures a cache that can store:

• open file descriptors, their sizes and modification times;

• information on existence of directories;

• file lookup errors, such as "file not found", "no read permission", and so on.

Caching of errors should be enabled separately by the open_file_cache_errors directive.

3.2. References and Indexes 310

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

max sets the maximum number of elements in the cache; on cache overflow the least
recently used (LRU) elements are removed;

inactive defines a time after which an element is removed from the cache if it has not been
accessed during this time;
By default, it is set to 60 seconds.

off disables the cache.

Example:

open_file_cache max=1000 inactive=20s;
open_file_cache_valid 30s;
open_file_cache_min_uses 2;
open_file_cache_errors on;

open_file_cache_errors

Syntax open_file_cache_errors on | off;
Default open_file_cache_errors off;
Context http, server, location

Enables or disables caching of file lookup errors by open_file_cache.

open_file_cache_min_uses

Syntax open_file_cache_min_uses number ;
Default open_file_cache_min_uses 1;
Context http, server, location

Sets the minimum number of file accesses during the period configured by the inactive parameter of
the open_file_cache directive, required for a file descriptor to remain open in the cache.

open_file_cache_valid

Syntax open_file_cache_valid time;
Default open_file_cache_valid 60s;
Context http, server, location

Sets a time after which open_file_cache elements should be validated.

output_buffers

Syntax output_buffers number size;
Default output_buffers 2 32k;
Context http, server, location

Sets the number and size of the buffers used for reading a response from a disk.

3.2. References and Indexes 311

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

port_in_redirect

Syntax port_in_redirect on | off;
Default port_in_redirect on;
Context http, server, location

Enables or disables specifying the port in absolute redirects issued by Angie.

The use of the primary server name in redirects is controlled by the server_name_in_redirect directive.

postpone_output

Syntax postpone_output size;
Default postpone_output 1460;
Context http, server, location

If possible, the transmission of client data will be postponed until Angie has at least size bytes of data
to send.

0 disables postponing data transmission

read_ahead

Syntax read_ahead size;
Default read_ahead 0;
Context http, server, location

Sets the amount of pre-reading for the kernel when working with file.

On Linux, the posix_fadvise(0, 0, 0, POSIX_FADV_SEQUENTIAL) system call is used, and so the size
parameter is ignored.

On FreeBSD, the fcntl(O_READAHEAD, size) system call, supported since FreeBSD 9.0-CURRENT, is
used.

recursive_error_pages

Syntax recursive_error_pages on | off;
Default recursive_error_pages off;
Context http, server, location

Enables or disables doing several redirects using the error_page directive. The number of such redirects
is limited .

request_pool_size

Syntax request_pool_size size;
Default request_pool_size 4k;
Context http, server

Allows accurate tuning of per-request memory allocations. This directive has minimal impact on perfor-
mance and should not generally be used.

3.2. References and Indexes 312

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

reset_timedout_connection

Syntax reset_timedout_connection on | off;
Default reset_timedout_connection off;
Context http, server, location

Enables or disables resetting timed-out connections and connections closed with the non-standard code
444. The reset is performed as follows. Before closing a socket, the SO_LINGER option is set for it with
a timeout value of 0. When the socket is

ò Note

timed out keep-alive connections are closed normally.

resolver

Syntax resolver address ... [valid=time] [ipv4=on | off] [ipv6=on | off]
[status_zone=zone];

Default —
Context http, server, location, upstream

Configures name servers used to resolve names of upstream servers into addresses, for example:

resolver 127.0.0.53 [::1]:5353;

The address can be specified as a domain name or IP address, with an optional port. If port is not
specified, the port 53 is used. Name servers are queried in a round-robin fashion.

By default, Angie caches answers using the TTL value of a response.

valid optional parameter allows overriding the response cache validity period

resolver 127.0.0.53 [::1]:5353 valid=30s;

By default, Angie will look up both IPv4 and IPv6 addresses while resolving.

ipv4=off disables looking up of IPv4 addresses
ipv6=off disables looking up of IPv6 addresses

status_zone optional parameter; enables the collection of DNS server request and response
metrics (/status/resolvers/<zone>) in the specified zone

� Tip

To prevent DNS spoofing, it is recommended to use DNS servers in a properly secured trusted local
network.

3.2. References and Indexes 313

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

� Tip

When running in Docker, use the corresponding internal DNS server address such as 127.0.0.11.

resolver_timeout

Syntax resolver_timeout time;
Default resolver_timeout 30s;
Context http, server, location, upstream

Sets a timeout for name resolution, for example:

resolver_timeout 5s;

root

Syntax root path;
Default root html;
Context http, server, location, if in location

Sets the root directory for requests. For example, with the following configuration

location /i/ {
root /data/w3;

}

The /data/w3/i/top.gif file will be sent in response to the /i/top.gif request.

The path value can contain variables, except $document_root and $realpath_root .

A path to the file is constructed by merely adding a URI to the value of the root directive. If a URI has
to be modified, the alias directive should be used.

satisfy

Syntax satisfy all | any;
Default satisfy all;
Context http, server, location

Allows access if all (all) or at least one (any) of the Access, Auth Basic, or Auth Request modules allow
access.

location / {
satisfy any;

allow 192.168.1.0/32;
deny all;

auth_basic "closed site";
auth_basic_user_file conf/htpasswd;

}

3.2. References and Indexes 314

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

send_lowat

Syntax send_lowat size;
Default send_lowat 0;
Context http, server, location

If the directive is set to a non-zero value, Angie will try to minimize the number of send operations on
client sockets by using either NOTE_LOWAT flag of the kqueue method or the SO_SNDLOWAT socket option.
In both cases the specified size is used.

send_timeout

Syntax send_timeout time;
Default send_timeout 60s;
Context http, server, location

Sets a timeout for transmitting a response to the client. The timeout is set only between two successive
write operations, not for the transmission of the whole response. If the client does not receive anything
within this time, the connection is closed.

sendfile

Syntax sendfile on | off;
Default sendfile off;
Context http, server, location, if in location

Enables or disables the use of sendfile().

aio can be used to pre-load data for sendfile():

location /video/ {
sendfile on;
tcp_nopush on;
aio on;

}

In this configuration, sendfile() is called with the SF_NODISKIO flag which causes it not to block on disk
I/O, but, instead, report back that the data are not in memory. Angie then initiates an asynchronous
data load by reading one byte. On the first read, the FreeBSD kernel loads the first 128K bytes of a
file into memory, although next reads will only load data in 16K chunks. This can be changed using the
read_ahead directive.

sendfile_max_chunk

Syntax sendfile_max_chunk size;
Default sendfile_max_chunk 2m;
Context http, server, location

Limits the amount of data that can be transferred in a single sendfile() call. Without the limit, one
fast connection may seize the worker process entirely.

3.2. References and Indexes 315

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

server

Syntax server { ... }
Default —
Context http

Sets configuration for a virtual server. There is no clear separation between IP-based (based on the
IP address) and name-based (based on the "Host" request header field) virtual servers. Instead, the
listen directives describe all addresses and ports that should accept connections for the server, and the
server_name directive lists all server names.

Example configurations are provided in the How Angie processes a request document.

server_name

Syntax server_name name ...;
Default server_name "";
Context server

Sets names of a virtual server, for example:

server {
server_name example.com www.example.com;

}

The first name becomes the primary server name.

Server names can include an asterisk ("*") replacing the first or last part of a name:

server {
server_name example.com *.example.com www.example.*;

}

Such names are called wildcard names.

The first two of the names mentioned above can be combined in one:

server {
server_name .example.com;

}

It is also possible to use regular expressions in server names, preceding the name with a tilde ("~"):

server {
server_name ~^www\d+\.example\.com$ www.example.com;

}

Regular expressions can contain captures that can later be used in other directives:

server {
server_name ~^(www\.)?(.+)$;

location / {
root /sites/$2;

}
}

server {

3.2. References and Indexes 316

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

server_name _;

location / {
root /sites/default;

}
}

Named captures in regular expressions create variables that can later be used in other directives:

server {
server_name ~^(www\.)?(?<domain>.+)$;

location / {
root /sites/$domain;

}
}

server {
server_name _;

location / {
root /sites/default;

}
}

ò Note

If the directive is set to $hostname, the hostname of the web server is used.

You can also specify an empty server name (""):

server {
server_name www.example.com "";

}

When searching for a virtual server by a name that is matched by multiple options (for example, both
a wildcard and a regular expression), the first matching option will be selected in the following priority
order:

• exact name;

• longest name with a wildcard at the beginning, such as *.example.com;

• longest name with a wildcard at the end, such as mail.*;

• the first matching regular expression (in the order of appearance), including an empty name.

. Attention

To make server_name work with TLS, you need to terminate the TLS connection. The directive
matches the Host in an HTTP request, so the handshake must be completed and the connection
decrypted.

3.2. References and Indexes 317

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

server_name_in_redirect

Syntax server_name_in_redirect on | off;
Default server_name_in_redirect off;
Context http, server, location

Enables or disables the use of the primary server name, specified by the server_name directive, in
absolute redirects issued by Angie.

on the primary server name, specified by the server_name directive
off the name from the "Host" request header field is used. If this field is not present,

the IP address of the server is used.

The use of a port in redirects is controlled by the port_in_redirect directive.

server_names_hash_bucket_size

Syntax server_names_hash_bucket_size size;
Default server_names_hash_bucket_size 32 | 64 | 128;
Context http

Sets the bucket size for the server names hash tables. The default value depends on the size of the
processor's cache line. The details of setting up hash tables are provided in a separate document .

server_names_hash_max_size

Syntax server_names_hash_max_size size;
Default server_names_hash_max_size 512;
Context http

Sets the maximum size of the server names hash tables. The details of setting up hash tables are provided
in a separate document .

server_tokens

Syntax server_tokens on | off | build | string ;
Default server_tokens on;
Context http, server, location

Enables or disables emitting Angie version on error pages and in the Server response header field. The
build parameter enables emitting the build name, set by the respective configure parameter, along with
the version.

Added in version 1.1.0: PRO

In Angie PRO, if the directive sets a string, which may also contain variables, the error pages and the
Server response header field will use the string's variable-interpolated value instead of server name,
version, and build name. An empty string disables emitting the Server field.

3.2. References and Indexes 318

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

status_zone

Syntax status_zone off | zone | key zone=zone[:number];
Default —
Context server, location, if in location

Allocates a shared memory zone for collecting /status/http/location_zones/<zone> and /sta-
tus/http/server_zones/<zone> metrics.

Several server contexts can share the same zone for data collection; the special value off disables data
collection in nested location blocks.

The syntax with a single zone value combines all metrics for the current context into one shared memory
zone:

server {

listen 80;
server_name *.example.com;

status_zone single;
...

}

key A string with variables, whose value determines the grouping of requests in the
zone. All requests producing identical values after substitution are grouped to-
gether. If substitution yields an empty value, metrics aren't updated.

zone The name of the shared memory zone.
count (optional) The maximum number of separate groups for collecting metrics. If new key values

would exceed this limit, they are grouped under zone instead.
The default value is 1.

In the following example, all requests sharing the same $host value are grouped into the host_zone.
Metrics are tracked separately for each unique $host until there are 10 metric groups. Once this limit
is reached, any additional $host values are included under the host_zone:

server {

listen 80;
server_name *.example.com;

status_zone $host zone=host_zone:10;

location / {

proxy_pass http://example.com;
}

}

The resulting metrics are thus split between individual hosts in the API output.

subrequest_output_buffer_size

Syntax subrequest_output_buffer_size size;
Default subrequest_output_buffer_size 4k | 8k;
Context http, server, location

3.2. References and Indexes 319

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Sets the size of the buffer used for storing the response body of a subrequest. By default, the buffer size
is equal to one memory page. This is either 4K or 8K, depending on a platform. It can be made smaller,
however.

ò Note

The directive is applicable only for subrequests with response bodies saved into memory. For example,
such subrequests are created by SSI .

tcp_nodelay

Syntax tcp_nodelay on | off;
Default tcp_nodelay on;
Context http, server, location

Enables or disables the use of the TCP_NODELAY option. The option is enabled when a connection is
transitioned into the keep-alive state. Additionally, it is enabled on SSL connections, for unbuffered
proxying, and for WebSocket proxying .

tcp_nopush

Syntax tcp_nopush on | off;
Default tcp_nopush off;
Context http, server, location

Enables or disables the use of the TCP_NOPUSH socket option on FreeBSD or the TCP_CORK socket option
on Linux. The options are enabled only when sendfile is used. Enabling the option allows

• sending the response header and the beginning of a file in one packet, on Linux and FreeBSD 4.*;

• sending a file in full packets.

try_files

Syntax try_files file ... uri ;
try_files file ... =code;

Default —
Context server, location

Checks the existence of files in the specified order and uses the first found file for request processing; the
processing is performed in the current context. The path to a file is constructed from the file parameter
according to the root and alias directives. It is possible to check directory's existence by specifying a
slash at the end of a name, e.g. $uri/. If none of the files were found, an internal redirect to the uri
specified in the last parameter is made. For example:

location /images/ {
try_files $uri /images/default.gif;

}

location = /images/default.gif {
expires 30s;

}

3.2. References and Indexes 320

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

The last parameter can also point to a named location, as shown in examples below. The last parameter
can also be a code:

location / {
try_files $uri $uri/index.html $uri.html =404;

}

In the following example,

location / {
try_files $uri $uri/ @drupal;

}

the try_files directive is equivalent to

location / {
error_page 404 = @drupal;
log_not_found off;

}

And here,

location ~ \.php$ {
try_files $uri @drupal;

fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to$fastcgi_script_name;

...
}

try_files checks the existence of the PHP file before passing the request to the FastCGI server.

location / {
try_files /system/maintenance.html

$uri $uri/index.html $uri.html
@mongrel;

}

location @mongrel {
proxy_pass http://mongrel;

}

location / {
try_files $uri $uri/ @drupal;

}

location ~ \.php$ {
try_files $uri @drupal;

fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to$fastcgi_script_name;
fastcgi_param SCRIPT_NAME $fastcgi_script_name;
fastcgi_param QUERY_STRING $args;

... other fastcgi_param
}

3.2. References and Indexes 321

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

location @drupal {
fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to/index.php;
fastcgi_param SCRIPT_NAME /index.php;
fastcgi_param QUERY_STRING q=$uri&$args;

... other fastcgi_param
}

location / {
try_files $uri $uri/ @wordpress;

}

location ~ \.php$ {
try_files $uri @wordpress;

fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to$fastcgi_script_name;
... other fastcgi_param
}

location @wordpress {
fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to/index.php;
... other fastcgi_param
}

types

Syntax types { ... }
Default types text/html html; image/gif gif; image/jpeg jpg;
Context http, server, location

Maps file name extensions to MIME types of responses. Extensions are case-insensitive. Several exten-
sions can be mapped to one type, for example:

types {
application/octet-stream bin exe dll;
application/octet-stream deb;
application/octet-stream dmg;

}

A sufficiently full mapping table is distributed with Angie in the conf/mime.types file.

To make a particular location emit the "application/octet-stream" MIME type for all requests, the
following configuration can be used:

location /download/ {
types { }
default_type application/octet-stream;

}

3.2. References and Indexes 322

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

types_hash_bucket_size

Syntax types_hash_bucket_size size;
Default types_hash_bucket_size 64;
Context http, server, location

Sets the bucket size for the types hash tables. The details of setting up hash tables are provided in a
separate document .

types_hash_max_size

Syntax types_hash_max_size size;
Default types_hash_max_size 1024;
Context http, server, location

Sets the maximum size of the types hash tables. The details of setting up hash tables are provided in a
separate document .

underscores_in_headers

Syntax underscores_in_headers on | off;
Default underscores_in_headers off;
Context http, server

Enables or disables the use of underscores in client request header fields. When the use of underscores
is disabled, request header fields whose names contain underscores are marked as invalid and become
subject to the ignore_invalid_headers directive.

If the directive is specified on the server level, the value from the default server can be used.

variables_hash_bucket_size

Syntax variables_hash_bucket_size size;
Default variables_hash_bucket_size 64;
Context http

Sets the bucket size for the variables hash table. The details of setting up hash tables are provided in a
separate document .

variables_hash_max_size

Syntax variables_hash_max_size size;
Default variables_hash_max_size 1024;
Context http

Sets the maximum size of the variables hash table. The details of setting up hash tables are provided in
a separate document .

3.2. References and Indexes 323

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Built-in Variables

The http_core module supports built-in variables with names matching the Apache Server variables.
First of all, these are variables representing client request header fields, such as $http_user_agent,
$http_cookie, and so on. Also, there are other variables:

$angie_version

Angie version

$arg_<name>

argument name in the request line

$args

arguments in the request line

$binary_remote_addr

client address in a binary form, value's length is always 4 bytes for IPv4 addresses or 16 bytes for IPv6
addresses

$body_bytes_sent

number of bytes sent to the client, not counting the response header; this variable is compatible with
the "%B" parameter of the mod_log_config Apache module

$bytes_sent

number of bytes sent to a client

$connection

connection serial number

$connection_requests

current number of requests made through a connection

$connection_time

connection time in seconds with a milliseconds resolution

$content_length

"Content-Length" request header field

$content_type

"Content-Type" request header field

$cookie_<name>

cookie with the specified name

3.2. References and Indexes 324

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$document_root

root or alias directive's value for the current request

$document_uri

same as $uri

$host

in this order of precedence: host name from the request line, or host name from the "Host" request
header field, or the server name matching a request

$hostname

host name

$http_<name>

arbitrary request header field; the last part of the variable name corresponds to the field name converted
to lower case with dashes replaced by underscores

$https

on if connection operates in SSL mode, or an empty string otherwise

$is_args

? if a request line has arguments, or an empty string otherwise

$limit_rate

setting this variable enables response rate limiting; see limit_rate

$msec

current time in seconds with the milliseconds resolution

$pid

PID of the worker process

$pipe

p if request was pipelined, . otherwise

$proxy_protocol_addr

client address from the PROXY protocol header

The PROXY protocol must be previously enabled by setting the proxy_protocol parameter in the listen
directive.

$proxy_protocol_port

client port from the PROXY protocol header

The PROXY protocol must be previously enabled by setting the proxy_protocol parameter in the listen
directive.

3.2. References and Indexes 325

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$proxy_protocol_server_addr

server address from the PROXY protocol header

The PROXY protocol must be previously enabled by setting the proxy_protocol parameter in the listen
directive.

$proxy_protocol_server_port

server port from the PROXY protocol header

The PROXY protocol must be previously enabled by setting the proxy_protocol parameter in the listen
directive.

$proxy_protocol_tlv_<name>

TLV from the PROXY protocol header. The name can be a TLV type name or its numeric value. In
the latter case, the value is hexadecimal and should be prefixed with 0x:

$proxy_protocol_tlv_alpn
$proxy_protocol_tlv_0x01

SSL TLVs can also be accessed by TLV type name or its numeric value, both prefixed by ssl_:

$proxy_protocol_tlv_ssl_version
$proxy_protocol_tlv_ssl_0x21

The following TLV type names are supported:

• alpn (0x01) - upper layer protocol used over the connection

• authority (0x02) - host name value passed by the client

• unique_id (0x05) - unique connection id

• netns (0x30) - name of the namespace

• ssl (0x20) - binary SSL TLV structure

The following SSL TLV type names are supported:

• ssl_version (0x21) - SSL version used in client connection

• ssl_cn (0x22) - SSL certificate Common Name

• ssl_cipher (0x23) - name of the used cipher

• ssl_sig_alg (0x24) - algorithm used to sign the certificate

• ssl_key_alg (0x25) - public-key algorithm

Also, the following special SSL TLV type name is supported:

• ssl_verify - client SSL certificate verification result: 0 if the client presented a certificate and it
was successfully verified, non-zero otherwise

The PROXY protocol must be previously enabled by setting the proxy_protocol parameter in the listen
directive.

$query_string

same as $args

3.2. References and Indexes 326

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$realpath_root

an absolute pathname corresponding to the root or alias directive's value for the current request, with
all symbolic links resolved to real paths

$remote_addr

client address

$remote_port

client port

$remote_user

user name supplied with the Basic authentication

$request

full original request line

$request_body

request body

The variable's value is made available in locations processed by the proxy_pass, fastcgi_pass, uwsgi_pass,
and scgi_pass directives when the request body was read to a memory buffer .

$request_body_file

name of a temporary file with the request body

At the end of processing, the file needs to be removed. To always write the request body to a file,
client_body_in_file_only needs to be enabled. When the name of a temporary file is passed in a proxied
request or in a request to a FastCGI/uwsgi/SCGI server, passing the request body should be disabled
by the proxy_pass_request_body off , fastcgi_pass_request_body off , uwsgi_pass_request_body off , or
scgi_pass_request_body off directives, respectively.

$request_completion

"OK" if a request has completed, or an empty string otherwise

$request_filename

file path for the current request, based on the root or alias directives, and the request URI

$request_id

unique request identifier generated from 16 random bytes, in hexadecimal

$request_length

request length (including request line, header, and request body)

$request_method

request method, usually GET or POST

3.2. References and Indexes 327

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$request_time

request processing time in seconds with a milliseconds resolution; time elapsed since the first bytes were
read from the client

$request_uri

full original request URI (with arguments)

$scheme

request scheme, "http" or "https"

$sent_http_<name>

arbitrary response header field; the last part of the variable name corresponds to the field name converted
to lower case with dashes replaced by underscores

$sent_trailer_<name>

arbitrary field sent at the end of the response; the last part of the variable name corresponds to the field
name converted to lower case with dashes replaced by underscores

$server_addr

address of the server which accepted a request

Computing the variable's value usually requires one system call. To avoid a system call, the listen
directives must specify addresses and use the bind parameter.

$server_name

name of the server which accepted a request

$server_port

port of the server which accepted a request

$server_protocol

request protocol, usually "HTTP/1.0", "HTTP/1.1", or "HTTP/2.0"

$status

response status

$time_iso8601

local time in the ISO 8601 standard format

$time_local

local time in the Common Log Format

$tcpinfo_rtt, $tcpinfo_rttvar, $tcpinfo_snd_cwnd, $tcpinfo_rcv_space

information about the client TCP connection; available on systems that support the TCP_INFO socket
option

3.2. References and Indexes 328

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$uri

current URI in request, normalized

The value of $uri may change during request processing, e.g. when doing internal redirects, or when
using index files.

Stream Module

Access

The module allows limiting access to certain client addresses.

Configuration Example

server {
...
deny 192.168.1.1;
allow 192.168.1.0/24;
allow 10.1.1.0/16;
allow 2001:0db8::/32;
deny all;

}

The rules are checked in sequence until the first match is found. In this example, access is allowed only
for IPv4 networks 10.1.1.0/16 and 192.168.1.0/24 excluding the address 192.168.1.1, and for IPv6
network 2001:0db8::/32.

Directives

allow

Syntax allow address | CIDR | unix: | all;
Default —
Context stream, server

Allows access for the specified network or address. If the special value unix: is specified, allows access
for all UNIX domain sockets.

deny

Syntax deny address | CIDR | unix: | all;
Default —
Context stream, server

Denies access for the specified network or address. If the special value unix: is specified, denies access
for all UNIX domain sockets.

ACME

Allows automatic certificate acquisition using the ACME protocol for servers defined in the stream
context.

When building from source the module is not built by default; it must be enabled with the build parameter
--with-stream_acme_module (also requires --with-http_acme_module). In packages and images from
our repositories the module is included in the build.

3.2. References and Indexes 329

https://datatracker.ietf.org/doc/html/rfc8555

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

s Important

For correct operation, the stream block must be located after the http block. This is because the
stream module uses client definitions created during HTTP configuration parsing.

Configuration Example

For configuration examples and setup instructions, see the ACME in Stream Module section.

Directives

acme

Syntax acme name;
Default —
Context server

For all domains specified in server_name directives in all server blocks that reference an ACME client
from the HTTP module with the given name, a single certificate will be obtained; if the server_name
configuration changes, the certificate will be updated to account for the changes.

On each Angie startup, new certificates are requested for all domains that lack a valid certificate. Possible
reasons include certificate expiration, missing files or inability to read them, and changes in certificate
settings.

ò Note

Currently, domains specified via regular expressions are not supported and will be skipped.

Wildcard domains are supported only in challenge=dns mode in acme_client.

This directive can be specified multiple times to load certificates of different types, for example RSA and
ECDSA:

server {

listen 12345 ssl;
server_name example.com www.example.com;

ssl_certificate $acme_cert_rsa;
ssl_certificate_key $acme_cert_key_rsa;

ssl_certificate $acme_cert_ecdsa;
ssl_certificate_key $acme_cert_key_ecdsa;

acme rsa;
acme ecdsa;

}

Embedded Variables

$acme_cert_<name>

Contents of the last certificate file (if any) obtained by the client with this name.

3.2. References and Indexes 330

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$acme_cert_key_<name>

Contents of the certificate key file used by the client with this name.

s Important

The certificate file is available only if the ACME client has obtained at least one certificate, while the
key file is available immediately after startup.

Geo

The module creates variables with values depending on the client IP address.

Configuration Example

geo $geo {
default 0;

127.0.0.1 2;
192.168.1.0/24 1;
10.1.0.0/16 1;

::1 2;
2001:0db8::/32 1;

}

Directives

geo

Syntax geo [$address] $variable { ... }
Default —
Context stream

Describes the dependency of values of the specified variable on the client IP address. By default, the
address is taken from the $remote_addr variable, but it can also be taken from another variable, for
example:

geo $arg_remote_addr $geo {
...;

}

ò Note

Since variables are evaluated only when used, the mere existence of even a large number of declared
geo variables does not cause any extra costs for connection processing.

If the value of a variable does not represent a valid IP address then the "255.255.255.255" address is
used.

Addresses are specified either as prefixes in CIDR notation (including individual addresses) or as ranges.

The following special parameters are also supported:

3.2. References and Indexes 331

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

delete deletes the specified network
default the value set to the variable if the client address does not match any of the

specified addresses. When addresses are specified in CIDR notation, "0.0.0.0/
0" and ":/0" can be used instead of default. When default is not specified,
the default value will be an empty string

include includes a file with addresses and values. There can be several inclusions.
ranges indicates that addresses are specified as ranges. This parameter should be the

first. To speed up loading of a geo base, addresses should be put in ascending
order.

Example:

geo $country {
default ZZ;
include conf/geo.conf;
delete 127.0.0.0/16;

127.0.0.0/24 US;
127.0.0.1/32 RU;
10.1.0.0/16 RU;
192.168.1.0/24 UK;

}

The conf/geo.conf file could contain the following lines:

10.2.0.0/16 RU;
192.168.2.0/24 RU;

A value of the most specific match is used. For example, for the 127.0.0.1 address the value RU will be
chosen, not US.

Example with ranges:

geo $country {
ranges;
default ZZ;
127.0.0.0-127.0.0.0 US;
127.0.0.1-127.0.0.1 RU;
127.0.0.2-127.0.0.255 US;
10.1.0.0-10.1.255.255 RU;
192.168.1.0-192.168.1.255 UK;

}

GeoIP

Creates variables with values depending on the client IP address, using the precompiled MaxMind
databases.

When using the databases with IPv6 support, IPv4 addresses are looked up as IPv4-mapped IPv6
addresses.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-stream_geoip_module build option.

s Important

This module requires the MaxMind GeoIP library.

3.2. References and Indexes 332

http://www.maxmind.com/
http://www.maxmind.com/app/c

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Configuration Example

stream {
geoip_country GeoIP.dat;
geoip_city GeoLiteCity.dat;

map $geoip_city_continent_code $nearest_server {
default example.com;
EU eu.example.com;
NA na.example.com;
AS as.example.com;

}
...
}

Directives

geoip_country

Syntax geoip_country file;
Default —
Context stream

Specifies a database used to determine the country depending on the client IP address. The following
variables are available when using this database:

$geoip_country_codetwo-letter country code, for example, "RU", "US".
$geoip_country_code3three-letter country code, for example, "RUS", "USA".
$geoip_country_namecountry name, for example, "Russian Federation", "United States".

geoip_city

Syntax geoip_city file;
Default —
Context stream

Specifies a database used to determine the country, region, and city depending on the client IP address.
The following variables are available when using this database:

$geoip_city_continent_codetwo-letter continent code, for example, "EU", "NA".
$geoip_city_country_codetwo-letter country code, for example, "RU", "US".
$geoip_city_country_code3three-letter country code, for example, "RUS", "USA".
$geoip_city_country_namecountry name, for example, "Russian Federation", "United States".
$geoip_dma_code DMA region code in the US (also known as "metro code"), according to the

geotargeting in Google AdWords API.
$geoip_latitude latitude.
$geoip_longitude longitude.
$geoip_region two-symbol country region code (region, territory, state, province, federal land

and the like), for example, "48", "DC".
$geoip_region_namecountry region name (region, territory, state, province, federal land and the like),

for example, "Moscow City", "District of Columbia".
$geoip_city city name, for example, "Moscow", "Washington".
$geoip_postal_codepostal code.

3.2. References and Indexes 333

https://developers.google.com/adwords/api/docs/appendix/cities-DMAregions

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

geoip_org

Syntax geoip_org file;
Default —
Context stream

Specifies a database used to determine the organization depending on the client IP address. The following
variable is available when using this database:

$geoip_org organization name, for example, "The University of Melbourne".

JS

The module is used to implement handlers in njs — a subset of the JavaScript language.

In our repositories, the module is built dynamically and is available as a separate package named
angie-module-njs or angie-pro-module-njs.

ò Note

A lightweight version of the package, named ...-njs-light, is also available; however, it can't be
used side by side with the regular one.

Configuration Example

stream {
js_import stream.js;

js_set $bar stream.bar;
js_set $req_line stream.req_line;

server {
listen 12345;

js_preread stream.preread;
return $req_line;

}

server {
listen 12346;

js_access stream.access;
proxy_pass 127.0.0.1:8000;
js_filter stream.header_inject;

}
}

http {
server {

listen 8000;
location / {

return 200 $http_foo\n;
}

}
}

3.2. References and Indexes 334

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

The stream.js file:

var line = '';

function bar(s) {
var v = s.variables;
s.log("hello from bar() handler!");
return "bar-var" + v.remote_port + "; pid=" + v.pid;

}

function preread(s) {
s.on('upload', function (data, flags) {

var n = data.indexOf('\n');
if (n != -1) {

line = data.substr(0, n);
s.done();

}
});

}

function req_line(s) {
return line;

}

// Read HTTP request line.
// Collect bytes in 'req' until
// request line is read.
// Injects HTTP header into a client's request

var my_header = 'Foo: foo';
function header_inject(s) {

var req = '';
s.on('upload', function(data, flags) {

req += data;
var n = req.search('\n');
if (n != -1) {

var rest = req.substr(n + 1);
req = req.substr(0, n + 1);
s.send(req + my_header + '\r\n' + rest, flags);
s.off('upload');

}
});

}

function access(s) {
if (s.remoteAddress.match('^192.*')) {

s.deny();
return;

}

s.allow();
}

export default {bar, preread, req_line, header_inject, access};

3.2. References and Indexes 335

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Directives

js_access

Syntax js_access function | module.function;
Default —
Context stream, server

Sets an njs function which will be called at the access phase. Module functions can be referenced.

The function is called once at the moment when the stream session reaches the access phase for the first
time. The function is called with the following arguments:

s the stream session object

At this phase, it is possible to perform initialization or register a callback with the s.on() method for
each incoming data chunk until one of the following methods are called: s.done(), s.decline(), s.allow().
As soon as one of these methods is called, the stream session processing switches to the next phase and
all current s.on() callbacks are dropped.

js_fetch_buffer_size

Syntax js_fetch_buffer_size size;
Default js_fetch_buffer_size 16k;
Context stream, server

Sets the size of the buffer used for reading and writing with Fetch API.

js_fetch_ciphers

Syntax js_fetch_ciphers ciphers;
Default js_fetch_ciphers HIGH:!aNULL:!MD5;
Context stream, server

Specifies the enabled ciphers for HTTPS connections with Fetch API. The ciphers are specified in the
format understood by the OpenSSL library.

The list of ciphers depends on the version of OpenSSL installed. The full list can be viewed using the
openssl ciphers command.

js_fetch_max_response_buffer_size

Syntax js_fetch_max_response_buffer_size size;
Default js_fetch_max_response_buffer_size 1m;
Context stream, server

Sets the maximum size of the response received with Fetch API.

3.2. References and Indexes 336

https://nginx.org/en/docs/njs/reference.html#stream
https://nginx.org/en/docs/njs/reference.html#s_on
https://nginx.org/en/docs/njs/reference.html#s_done
https://nginx.org/en/docs/njs/reference.html#s_decline
https://nginx.org/en/docs/njs/reference.html#s_allow
https://nginx.org/en/docs/njs/reference.html#s_on
https://nginx.org/en/docs/njs/reference.html#ngx_fetch
https://nginx.org/en/docs/njs/reference.html#ngx_fetch
https://nginx.org/en/docs/njs/reference.html#ngx_fetch

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

js_fetch_protocols

Syntax js_fetch_protocols [TLSv1] [TLSv1.1] [TLSv1.2] [TLSv1.3];
Default js_fetch_protocols TLSv1 TLSv1.1 TLSv1.2;
Context stream, server

Enables the specified protocols for HTTPS connections with Fetch API.

js_fetch_timeout

Syntax js_fetch_timeout time;
Default js_fetch_timeout 60s;
Context stream, server

Defines a timeout for reading and writing for Fetch API. The timeout is set only between two successive
read/write operations, not for the whole response. If no data is transmitted within this time, the
connection is closed.

js_fetch_trusted_certificate

Syntax js_fetch_trusted_certificate file;
Default —
Context stream, server

Specifies a file with trusted CA certificates in the PEM format used to verify the HTTPS certificate with
Fetch API.

js_fetch_verify

Syntax js_fetch_verify on | off;
Default js_fetch_verify on;
Context stream, server

Enables or disables verification of the HTTPS server certificate with Fetch API.

js_fetch_verify_depth

Syntax js_fetch_verify_depth number ;
Default js_fetch_verify_depth 100;
Context stream, server

Sets the verification depth in the HTTPS server certificates chain with Fetch API.

js_filter

Syntax js_filter function | module.function;
Default —
Context stream, server

Sets a data filter. Module functions can be referenced.

3.2. References and Indexes 337

https://nginx.org/en/docs/njs/reference.html#ngx_fetch
https://nginx.org/en/docs/njs/reference.html#ngx_fetch
https://nginx.org/en/docs/njs/reference.html#ngx_fetch
https://nginx.org/en/docs/njs/reference.html#ngx_fetch
https://nginx.org/en/docs/njs/reference.html#ngx_fetch

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

The filter function is called once at the moment when the stream session reaches the content phase. The
filter function is called with the following arguments:

s the stream session object

At this phase, it is possible to perform initialization or register a callback with the s.on() method for
each incoming data chunk. The s.off() method may be used to unregister a callback and stop filtering.

ò Note

As the js_filter handler returns its result immediately, it supports only synchronous operations.
Thus, asynchronous operations such as ngx.fetch() or setTimeout() are not supported.

js_import

Syntax js_import module.js | export_name from module.js;
Default —
Context stream, server

Imports a module that implements location and variable handlers in njs. The export_name is used as
a namespace to access module functions. If the export_name is not specified, the module name will be
used as a namespace.

js_import stream.js;

Here, the module name stream is used as a namespace when accessing exports. If the imported module
exports foo(), then stream.foo is used to access it.

Several js_import directives can be specified.

js_path

Syntax js_path path;
Default —
Context stream, server

Sets an additional path for njs modules.

js_preload_object

Syntax js_preload_object name.json | name from file.json;
Default —
Context stream, server

Preloads an immutable object at configure time. The name is used as a name of the global variable
though which the object is available in njs code. If the name is not specified, the file name will be used
instead.

js_preload_object map.json;

Here, the map is used as a name while accessing the preloaded object.

Several js_preload_object directives can be specified.

3.2. References and Indexes 338

https://nginx.org/en/docs/njs/reference.html#stream
https://nginx.org/en/docs/njs/reference.html#s_on
https://nginx.org/en/docs/njs/reference.html#s_off
https://nginx.org/en/docs/njs/reference.html#ngx_fetch
https://nginx.org/en/docs/njs/reference.html#settimeout

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

js_preread

Syntax js_preread function | module.function;
Default —
Context stream, server

Sets an njs function which will be called at the preread phase. Module functions can be referenced.

The function is called once at the moment when the stream session reaches the preread phase for the
first time. The function is called with the following arguments:

s the stream session object

At this phase, it is possible to perform initialization or register a callback with the s.on() method for
each incoming data chunk until one of the following methods are called: s.done(), s.decline(), s.allow().
When one of these methods is called, the stream session switches to the next phase and all current s.on()
callbacks are dropped.

ò Note

As the js_preread handler returns its result immediately, it supports only synchronous operations.
Thus, asynchronous operations such as ngx.fetch() or setTimeout() are not supported. Nevertheless,
asynchronous operations are supported in s.on() callbacks in the preread phase.

js_set

Syntax js_set $variable function | module.function;
Default —
Context stream, server

Sets an njs function for the specified variable. Module functions can be referenced.

The function is called when the variable is referenced for the first time for a given request. The exact
moment depends on a phase at which the variable is referenced. This can be used to perform some
logic not related to variable evaluation. For example, if the variable is referenced only in the log_format
directive, its handler will not be executed until the log phase. This handler can be used to do some
cleanup right before the request is freed.

ò Note

As the js_set handler returns its result immediately, it supports only synchronous operations. Thus,
asynchronous operations such as ngx.fetch() or setTimeout() are not supported.

js_shared_dict_zone

Syntax js_shared_dict_zone zone=name:size [timeout=time] [type=string | number]
[evict];

Default —
Context stream

3.2. References and Indexes 339

https://nginx.org/en/docs/njs/reference.html#stream
https://nginx.org/en/docs/njs/reference.html#s_on
https://nginx.org/en/docs/njs/reference.html#s_done
https://nginx.org/en/docs/njs/reference.html#s_decline
https://nginx.org/en/docs/njs/reference.html#s_allow
https://nginx.org/en/docs/njs/reference.html#s_on
https://nginx.org/en/docs/njs/reference.html#ngx_fetch
https://nginx.org/en/docs/njs/reference.html#settimeout
https://nginx.org/en/docs/njs/reference.html#s_on
https://nginx.org/en/docs/njs/reference.html#ngx_fetch
https://nginx.org/en/docs/njs/reference.html#settimeout

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Sets the name and size of the shared memory zone that keeps the key-value dictionary shared between
worker processes.

type optional parameter, allows redefining the value type to number, by default the
shared dictionary uses a string as a key and a value

timeout optional parameter, sets the time after which all shared dictionary entries are
removed from the zone

evict optional parameter, removes the oldest key-value pair when the zone storage is
exhausted

Examples:

example.conf:
Creates a 1Mb dictionary with string values,
removes key-value pairs after 60 seconds of inactivity:
js_shared_dict_zone zone=foo:1M timeout=60s;

Creates a 512Kb dictionary with string values,
forcibly removes oldest key-value pairs when the zone is exhausted:
js_shared_dict_zone zone=bar:512K timeout=30s evict;

Creates a 32Kb permanent dictionary with number values:
js_shared_dict_zone zone=num:32k type=number;

example.js:
function get(r) {

r.return(200, ngx.shared.foo.get(r.args.key));
}

function set(r) {
r.return(200, ngx.shared.foo.set(r.args.key, r.args.value));

}

function delete(r) {
r.return(200, ngx.shared.bar.delete(r.args.key));

}

function increment(r) {
r.return(200, ngx.shared.num.incr(r.args.key, 2));

}

js_var

Syntax js_var $variable [value];
Default —
Context stream, server

Declares a writable variable. The value can contain text, variables, and their combination.

Session Object Properties

Each stream njs handler receives one argument, a stream session object.

3.2. References and Indexes 340

https://nginx.org/en/docs/njs/reference.html#s_variables
https://nginx.org/en/docs/njs/reference.html#stream

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Limit Conn

The module is used to limit the number of connections per the defined key, in particular, the number of
connections from a single IP address.

Configuration Example

stream {
limit_conn_zone $binary_remote_addr zone=addr:10m;

...

server {

...

limit_conn addr 1;
limit_conn_log_level error;

}
}

Directives

limit_conn

Syntax limit_conn zone number ;
Default —
Context stream, server

Sets the shared memory zone and the maximum allowed number of connections for a given key value.
When this limit is exceeded, the server will close the connection. For example, the directives

limit_conn_zone $binary_remote_addr zone=addr:10m;

server {
...
limit_conn addr 1;

}

allow only one connection per IP address at a time.

When several limit_conn directives are specified, any configured limit will apply.

These directives are inherited from the previous configuration level if and only if there are no limit_conn
directives defined on the current level.

limit_conn_dry_run

Syntax limit_conn_dry_run on | off;
Default limit_conn_dry_run off;
Context stream, server

Enables the dry run mode. In this mode, the number of connections is not limited, however, in the
shared memory zone, the number of excessive connections is accounted as usual.

3.2. References and Indexes 341

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

limit_conn_log_level

Syntax limit_conn_log_level info | notice | warn | error;
Default limit_conn_log_level error;
Context stream, server

Sets the desired logging level for cases when the server limits the number of connections.

limit_conn_zone

Syntax limit_conn_zone key zone = name:size;
Default —
Context stream

Sets parameters for a shared memory zone that will keep states for various keys. In particular, the state
includes the current number of connections. The key can contain text, variables, and their combinations.
Connections with an empty key value are not accounted.

Usage example:

limit_conn_zone $binary_remote_addr zone=addr:10m;

Here, a client IP address is set by the $binary_remote_addr variable.

The size of $binary_remote_addr is 4 bytes for IPv4 addresses or 16 bytes for IPv6 addresses. The
stored state always occupies 32 or 64 bytes on 32-bit platforms and 64 bytes on 64-bit platforms.

One megabyte zone can keep about 32 thousand 32-byte states or about 16 thousand 64-byte states. If
the zone storage is exhausted, the server will close the connection.

Built-in Variables

$limit_conn_status

keeps the result of limiting the number of connections: PASSED, REJECTED or REJECTED_DRY_RUN

Log

The module writes request logs in the specified format.

Configuration Example

log_format basic '$remote_addr [$time_local] '
'$protocol $status $bytes_sent $bytes_received '
'$session_time';

access_log /spool/logs/angie-access.log basic buffer=32k;

Directives

access_log

Syntax access_log path [format [buffer=size] [gzip[=level]] [flush=time] [if=condition]];
access_log off;

Default access_log off;
Context stream, server

3.2. References and Indexes 342

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Sets the path, format, and configuration for a buffered log write. Several logs can be specified on the
same configuration level. Logging to syslog can be configured by specifying the "syslog:" prefix in the
first parameter. The special value off cancels all access_log directives on the current level.

If either the buffer or gzip parameter is used, writes to log will be buffered.

³ Caution

The buffer size must not exceed the size of an atomic write to a disk file. For FreeBSD this size is
unlimited.

When buffering is enabled, the data will be written to the file:

• if the next log line does not fit into the buffer;

• if the buffered data is older than specified by the flush parameter;

• when a worker process is re-opening log files or is shutting down.

If the gzip parameter is used, then the buffered data will be compressed before writing to the file. The
compression level can be set between 1 (fastest, less compression) and 9 (slowest, best compression).
By default, the buffer size is equal to 64K bytes, and the compression level is set to 1. Since the data is
compressed in atomic blocks, the log file can be decompressed or read by "zcat" at any time.

Example:

access_log /path/to/log.gz basic gzip flush=5m;

s Important

For gzip compression to work, Angie must be built with the zlib library.

The file path can contain variables, but such logs have some constraints:

• the user whose credentials are used by worker processes should have permissions to create files in
a directory with such logs;

• buffered writes do not work;

• the file is opened and closed for each log write. However, since the descriptors of frequently used
files can be stored in a cache, writing to the old file can continue during the time specified by the
open_log_file_cache directive's valid parameter.

The if parameter enables conditional logging. A session will not be logged if the condition evaluates to
"0" or an empty string.

log_format

Syntax log_format name [escape=default | json | none] string ...;
Default —
Context stream

Specifies log format.

The escape parameter allows setting json or default characters escaping in variables, by default,
default escaping is used. The none value disables escaping.

For default escaping, characters """, "\", and other characters with values less than 32 or above 126
are escaped as "\xXX". If the variable value is not found, a hyphen "-" will be logged.

3.2. References and Indexes 343

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

For json escaping, all characters not allowed in JSON strings will be escaped: characters """ and "\"
are escaped as "\"" and "\\", characters with values less than 32 are escaped as "\n", "\r", "\t", "\b",
"\f", or "\u00XX".

open_log_file_cache

Syntax open_log_file_cache max=N [inactive=time] [min_uses=N] [valid=time];
open_log_file_cache off;

Default open_log_file_cache off;
Context stream, server

Defines a cache that stores the file descriptors of frequently used logs whose names contain variables.
The directive has the following parameters:

max sets the maximum number of descriptors in a cache; if the cache becomes full the
least recently used (LRU) descriptors are closed

inactive sets the time after which the cached descriptor is closed if there were no access
during this time; by default, 10 seconds

min_uses sets the minimum number of file uses during the time defined by the inactive
parameter to let the descriptor stay open in a cache; by default, 1

valid sets the time after which it should be checked that the file still exists with the
same name; by default, 60 seconds

off disables caching

Usage example:

open_log_file_cache max=1000 inactive=20s valid=1m min_uses=2;

Map

Creates variables whose values depend on values of other variables.

Configuration Example

map $remote_addr $limit {
127.0.0.1 "";
default $binary_remote_addr;

}

limit_conn_zone $limit zone=addr:10m;
limit_conn addr 1;

Directives

map

Syntax map string $variable { ... };
Default —
Context stream

Creates a new variable. Its value depends on the first parameter, specified as a string with variables, for
example:

3.2. References and Indexes 344

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

set $var1 "foo";
set $var2 "bar";

map $var1$var2 $new_variable {
default "foobar_value";

}

Here, the variable $new_variable will have a value composed of the two variables $var1 and $var2, or
a default value if these variables are not defined.

ò Note

Since variables are evaluated only when they are used, the mere declaration even of a large number
of "map" variables does not add any extra costs to request processing.

Parameters inside the map block specify a mapping between source and resulting values.

Source values are specified as strings or regular expressions.

Strings are matched ignoring the case.

A regular expression should either start with a ~ symbol for a case-sensitive matching, or with the ~*
symbols for case-insensitive matching. A regular expression can contain named and positional captures
that can later be used in other directives along with the resulting variable.

If a source value matches one of the names of special parameters described below, it should be prefixed
with the \ symbol.

The resulting value can contain text, variable and their combination.

The following special parameters are also supported:

default value sets the resulting value if the source value matches none of the specified
variants. When default is not specified, the default resulting value will be
an empty string.

hostnames indicates that source values can be hostnames with a prefix or suffix mask.
This parameter should be specified before the list of values.

For example,

*.example.com 1;
example.* 1;

The following two records

example.com 1;
*.example.com 1;

can be combined:

.example.com 1;

include file includes a file with values. There can be several inclusions.
volatile indicates that the variable is not cacheable.

If the source value matches more than one of the specified variants, e.g. both a mask and a regular
expression match, the first matching variant will be chosen, in the following order of priority:

3.2. References and Indexes 345

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

1. String value without a mask

2. Longest string value with a prefix mask, e.g. *.example.com

3. Longest string value with a suffix mask, e.g. mail.*

4. First matching regular expression (in order of appearance in a configuration file)

5. Default value (default)

map_hash_bucket_size

Syntax map_hash_bucket_size size;
Default map_hash_bucket_size 32|64|128;
Context stream

Sets the bucket size for the map variables hash tables. Default value depends on the processor's cache
line size. The details of setting up hash tables are provided separately .

map_hash_max_size

Syntax map_hash_max_size size;
Default map_hash_max_size 2048;
Context stream

Sets the maximum size of the map variables hash tables. The details of setting up hash tables are
provided separately .

MQTT Preread

Enables extracting client IDs and usernames from CONNECT packets for Message Queuing Telemetry
Transport (MQTT) versions 3.1.1 and 5.0.

When building from the source code, the module must be enabled with the build parameter
--with-stream_mqtt_preread_module. In packages and images from our repositories, the module is
included in the build.

Configuration Example

Choosing a server in a group by client ID:

stream {

mqtt_preread on;

upstream mqtt {
hash $mqtt_preread_clientid;
...

}
}

Directives

3.2. References and Indexes 346

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718028
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901033

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

mqtt_preread

Syntax mqtt_preread on | off;
Default mqtt_preread off;
Context stream, server

Controls extracting information from CONNECT packets during the preread phase. If the parameter is
enabled (on), the variables listed below are populated in the context where it is specified.

Built-in Variables

For detailed description of value semantics, see the MQTT protocol specification versions 3.1.1 and 5.0.

$mqtt_preread_clientid

Unique client identifier.

$mqtt_preread_username

Optional username.

Pass

Allows passing the accepted connection directly to any configured listening socket in HTTP , Stream, or
Mail modules.

Configuration Example

After the stream module handles the SSL/TLS termination, it forwards the connection to the http
module:

http {
server {

listen 8000;

location / {
root html;

}
}

}

stream {
server {

listen 12345 ssl;

ssl_certificate domain.crt;
ssl_certificate_key domain.key;

pass 127.0.0.1:8000;
}

}

3.2. References and Indexes 347

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718031
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901033

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Directives

pass

Syntax pass address;
Default —
Context server

This directive sets the server address to which the client connection should be passed. The address can
be given as an IP address and port:

pass 127.0.0.1:12345;

Or as a path to a UNIX domain socket:

pass unix:/tmp/stream.socket;

Also, the address can be set with variables:

pass $upstream;

Proxy

Allows proxying data streams over TCP, UDP, and UNIX domain sockets.

Configuration Example

server {
listen 127.0.0.1:12345;
proxy_pass 127.0.0.1:8080;

}

server {
listen 12345;
proxy_connect_timeout 1s;
proxy_timeout 1m;
proxy_pass example.com:12345;

}

server {
listen 53 udp reuseport;
proxy_timeout 20s;
proxy_pass dns.example.com:53;

}

server {
listen [::1]:12345;
proxy_pass unix:/tmp/stream.socket;

}

Directives

3.2. References and Indexes 348

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxy_bind

Syntax proxy_bind address [transparent] | off;
Default —
Context stream, server

Makes outgoing connections to a proxied server originate from the specified local IP address. Parameter
value can contain variables. The special value off cancels the effect of the proxy_bind directive inherited
from the previous configuration level, which allows the system to auto-assign the local IP address.

The transparent parameter allows outgoing connections to a proxied server originate from a non-local
IP address, for example, from a real IP address of a client:

proxy_bind $remote_addr transparent;

For this parameter to work, Angie worker processes usually need to run with superuser privileges. On
Linux, this is not required: if the transparent parameter is specified, worker processes inherit the
CAP_NET_RAW capability from the master process.

s Important

The kernel routing table should also be configured to intercept network traffic from the proxied server.

proxy_buffer_size

Syntax proxy_buffer_size size;
Default proxy_buffer_size 16k;
Context stream, server

Sets the size of the buffer used for reading data from the proxied server. Also sets the size of the buffer
used for reading data from the client.

proxy_connect_timeout

Syntax proxy_connect_timeout time;
Default proxy_connect_timeout 60s;
Context stream, server

Defines a timeout for establishing a connection with a proxied server.

proxy_connection_drop

Syntax proxy_connection_drop time | on | off;
Default proxy_connection_drop off;
Context stream, server

Enables termination of all sessions to the proxied server after it has been removed from the group or
marked as permanently unavailable by a reresolve process or the API command DELETE.

A session is terminated when the next read or write event is processed for either the client or the proxied
server.

Setting time enables a session termination timeout ; with on set, sessions are dropped immediately.

3.2. References and Indexes 349

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxy_download_rate

Syntax proxy_download_rate rate;
Default proxy_download_rate 0;
Context stream, server

Limits the speed of reading the data from the proxied server. The rate is specified in bytes per second.

0 disables rate limiting

ò Note

The limit is set per a connection, so if Angie simultaneously opens two connections to the proxied
server, the overall rate will be twice as much as the specified limit.

Parameter value can contain variables. It may be useful in cases where rate should be limited depending
on a certain condition:

map $slow $rate {
1 4k;
2 8k;

}

proxy_download_rate $rate;

proxy_half_close

Syntax proxy_half_close on | off;
Default proxy_half_close off;
Context stream, server

Enables or disables closing each direction of a TCP connection independently ("TCP half-close"). If
enabled, proxying over TCP will be kept until both sides close the connection.

proxy_next_upstream

Syntax proxy_next_upstream on | off;
Default proxy_next_upstream on;
Context stream, server

When a connection to the proxied server cannot be established, determines whether a client connection
will be passed to the next server in the upstream pool .

Passing a connection to the next server can be limited by the number of tries and by time.

proxy_next_upstream_timeout

Syntax proxy_next_upstream_timeout time;
Default proxy_next_upstream_timeout 0;
Context stream, server

3.2. References and Indexes 350

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Limits the time allowed to pass a connection to the next server.

0 turns off this limitation

proxy_next_upstream_tries

Syntax proxy_next_upstream_tries number ;
Default proxy_next_upstream_tries 0;
Context stream, server

Limits the number of possible tries for passing a connection to the next server.

0 turns off this limitation

proxy_pass

Syntax proxy_pass address;
Default —
Context server

Sets the address of a proxied server. The address can be specified as a domain name or IP address, and
a port:

proxy_pass localhost:12345;

or as a UNIX domain socket path:

proxy_pass unix:/tmp/stream.socket;

If a domain name resolves to several addresses, all of them will be used in a round-robin fashion. In
addition, an address can be specified as a server group.

The address can also be specified using variables:

proxy_pass $upstream;

In this case, the server name is searched among the described server groups and, if not found, is deter-
mined using a resolver .

proxy_protocol

Syntax proxy_protocol on | off;
Default proxy_protocol off;
Context stream, server

Enables the PROXY protocol for connections to a proxied server.

proxy_requests

Syntax proxy_requests number ;
Default proxy_requests 0;
Context stream, server

3.2. References and Indexes 351

http://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Sets the number of client datagrams at which binding between a client and existing UDP stream session
is dropped. After receiving the specified number of datagrams, next datagram from the same client starts
a new session. The session terminates when all client datagrams are transmitted to a proxied server and
the expected number of responses is received, or when it reaches a timeout .

proxy_responses

Syntax proxy_responses number ;
Default —
Context stream, server

Sets the number of datagrams expected from the proxied server in response to a client datagram if the
UDP protocol is used. The number serves as a hint for session termination. By default, the number of
datagrams is not limited.

If zero value is specified, no response is expected. However, if a response is received and the session is
still not finished, the response will be handled.

proxy_socket_keepalive

Syntax proxy_socket_keepalive on | off;
Default proxy_socket_keepalive off;
Context stream, server

Configures the "TCP keepalive" behavior for outgoing connections to a proxied server.

off By default, the operating system's settings are in effect for the socket.
on The SO_KEEPALIVE socket option is turned on for the socket.

proxy_ssl

Syntax proxy_ssl on | off;
Default proxy_ssl off;
Context stream, server

Enables the SSL/TLS protocol for connections to a proxied server.

proxy_ssl_certificate

Syntax proxy_ssl_certificate file [file];
Default —
Context stream, server

Specifies a file with the certificate in the PEM format used for authentication to a proxied server.
Variables can be used in the file name.

Added in version 1.2.0.

When proxy_ssl_ntls is enabled, the directive takes two arguments instead of one:

3.2. References and Indexes 352

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

server {
proxy_ssl_ntls on;

proxy_ssl_certificate sign.crt enc.crt;
proxy_ssl_certificate_key sign.key enc.key;

proxy_ssl_ciphers "ECC-SM2-WITH-SM4-SM3:ECDHE-SM2-WITH-SM4-SM3:RSA";

proxy_pass backend:12345;
}

proxy_ssl_certificate_key

Syntax proxy_ssl_certificate_key file [file];
Default —
Context stream, server

Specifies a file with the secret key in the PEM format used for authentication to a proxied server.
Variables can be used in the file name.

Added in version 1.2.0.

When proxy_ssl_ntls is enabled, the directive accepts two arguments instead of one:

server {
proxy_ssl_ntls on;

proxy_ssl_certificate sign.crt enc.crt;
proxy_ssl_certificate_key sign.key enc.key;

proxy_ssl_ciphers "ECC-SM2-WITH-SM4-SM3:ECDHE-SM2-WITH-SM4-SM3:RSA";

proxy_pass backend:12345;
}

proxy_ssl_ciphers

Syntax proxy_ssl_ciphers ciphers;
Default proxy_ssl_ciphers DEFAULT;
Context stream, server

Specifies the enabled ciphers for requests to a proxied server. The ciphers are specified in the format
understood by the OpenSSL library.

The list of ciphers depends on the version of OpenSSL installed. The full list can be viewed using the
openssl ciphers command.

. Attention

The proxy_ssl_ciphers directive does not configure ciphers for TLS 1.3 when using OpenSSL. To
configure TLS 1.3 ciphers with OpenSSL, use the proxy_ssl_conf_command directive, which was
added for advanced SSL configuration.

• In LibreSSL, TLS 1.3 ciphers can be configured using proxy_ssl_ciphers.

3.2. References and Indexes 353

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

• In BoringSSL, TLS 1.3 ciphers cannot be configured.

proxy_ssl_conf_command

Syntax proxy_ssl_conf_command name value;
Default —
Context stream, server

Sets arbitrary OpenSSL configuration commands when establishing a connection with the proxied server.

s Important

The directive is supported when using OpenSSL 1.0.2 or higher. To configure TLS 1.3 ciphers with
OpenSSL, use the ciphersuites command.

Several proxy_ssl_conf_command directives can be specified on the same level. These directives are
inherited from the previous configuration level if and only if there are no proxy_ssl_conf_command
directives defined on the current level.

³ Caution

Note that configuring OpenSSL directly might result in unexpected behavior.

proxy_ssl_crl

Syntax proxy_ssl_crl file;
Default —
Context stream, server

Specifies a file with revoked certificates (CRL) in the PEM format used to verify the certificate of the
proxied server.

proxy_ssl_name

Syntax proxy_ssl_name name;
Default proxy_ssl_name host from proxy_pass;
Context stream, server

Allows overriding the server name used to verify the certificate of the proxied server and to be passed
through SNI when establishing a connection with the proxied server. The server name can also be
specified using variables.

By default, the host name from the address specified by the proxy_pass directive is used.

proxy_ssl_ntls

Added in version 1.2.0.

3.2. References and Indexes 354

https://docs.openssl.org/master/man3/SSL_CONF_cmd/

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Syntax proxy_ssl_ntls on | off;
Default proxy_ssl_ntls off;
Context stream, server

Enables client-side support for NTLS when using the TongSuo TLS library.

server {
proxy_ssl_ntls on;

proxy_ssl_certificate sign.crt enc.crt;
proxy_ssl_certificate_key sign.key enc.key;

proxy_ssl_ciphers "ECC-SM2-WITH-SM4-SM3:ECDHE-SM2-WITH-SM4-SM3:RSA";

proxy_pass backend:12345;
}

s Important

Angie must be built using the --with-ntls configuration parameter, with the corresponding SSL library
with NTLS support

./configure --with-openssl=../Tongsuo-8.3.0 \
--with-openssl-opt=enable-ntls \
--with-ntls

proxy_ssl_password_file

Syntax proxy_ssl_password_file file;
Default —
Context stream, server

Specifies a file with passphrases for secret keys where each passphrase is specified on a separate line.
Passphrases are tried in turn when loading the key.

proxy_ssl_protocols

Syntax proxy_ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1] [TLSv1.2] [TLSv1.3];
Default proxy_ssl_protocols TLSv1.2 TLSv1.3;
Context stream, server

Changed in version 1.2.0: The TLSv1.3 parameter was added to the default set.

Enables the specified protocols for requests to a proxied server.

proxy_ssl_server_name

Syntax proxy_ssl_server_name on | off;
Default proxy_ssl_server_name off;
Context stream, server

3.2. References and Indexes 355

https://github.com/Tongsuo-Project/Tongsuo

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Enables or disables passing the server name specified by the proxy_ssl_name directive through the Server
Name Indication TLS extension (SNI, RFC 6066) when establishing a connection with the proxied server.

proxy_ssl_session_reuse

Syntax proxy_ssl_session_reuse on | off;
Default proxy_ssl_session_reuse on;
Context stream, server

Determines whether SSL sessions can be reused when working with the proxied server. If the errors
"SSL3_GET_FINISHED:digest check failed" appear in the logs, try disabling session reuse.

proxy_ssl_trusted_certificate

Syntax proxy_ssl_trusted_certificate file;
Default —
Context stream, server

Specifies a file with trusted CA certificates in the PEM format used to verify the certificate of the proxied
server.

proxy_ssl_verify

Syntax proxy_ssl_verify on | off;
Default proxy_ssl_verify off;
Context stream, server

Enables or disables verification of the proxied server certificate.

proxy_ssl_verify_depth

Syntax proxy_ssl_verify_depth number ;
Default proxy_ssl_verify_depth 1;
Context stream, server

Sets the verification depth in the proxied server certificates chain.

proxy_timeout

Syntax proxy_timeout time;
Default proxy_timeout 10m;
Context stream, server

Sets the timeout between two successive read or write operations on client or proxied server connections.
If no data is transmitted within this time, the connection is closed.

upstream_probe_timeout (PRO)

Added in version 1.4.0: PRO

3.2. References and Indexes 356

http://en.wikipedia.org/wiki/Server_Name_Indication
http://en.wikipedia.org/wiki/Server_Name_Indication
https://datatracker.ietf.org/doc/html/rfc6066.html

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Syntax upstream_probe_timeout time;
Default upstream_probe_timeout 50s;
Context server

Sets the maximum inactivity time of an established server connection for probes configured using the
upstream_probe (PRO) directive; if this limit is exceeded, the connection will be closed.

proxy_upload_rate

Syntax proxy_upload_rate rate;
Default proxy_upload_rate 0;
Context stream, server

Limits the speed of reading the data from the client. The rate is specified in bytes per second.

0 disables rate limiting

ò Note

The limit is set per connection, so if the client simultaneously opens two connections, the overall rate
will be twice as much as the specified limit.

The parameter value can contain variables. This may be useful in cases where the rate should be limited
depending on a certain condition:

map $slow $rate {
1 4k;
2 8k;

}

proxy_upload_rate $rate;

RDP Preread

When using the RDP protocol, this module allows extracting cookies, which are used for session identi-
fication and management, before making a load balancing decision.

When building from the source code, the module must be enabled with the
--with-stream_rdp_preread_module build option. In packages and images from our repos, the
module is included in the build.

Configuration Example

Binding to the Cookie-Issuing Server

This configuration uses the learn mode of the sticky directive:

stream {

rdp_preread on;

upstream rdp {

3.2. References and Indexes 357

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

server 127.0.0.1:3390 sid=a;
server 127.0.0.1:3391 sid=b;

sticky learn lookup=$rdp_cookie create=$rdp_cookie zone=sessions:1m;
}

}

Directives

rdp_preread

Syntax rdp_preread on | off;
Default rdp_preread off;
Context stream, server

Controls extracting information from RDP protocol cookies during the preread stage. If the setting is
on, the variables listed below will be populated in the context where it is specified.

Built-in Variables

The semantics of cookie values depend on the RDP protocol version.

$rdp_cookie

The entire cookie value.

$rdp_cookie_<name>

The value of the cookie field with the specified name.

RealIP

Allows changing the client address and port to those passed in the PROXY protocol header. The PROXY
protocol must be previously enabled by setting the proxy_protocol parameter in the listen directive.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-stream_realip_module build option.

In packages and images from our repos, the module is included in the build.

Configuration Example

listen 12345 proxy_protocol;

set_real_ip_from 192.168.1.0/24;
set_real_ip_from 192.168.2.1;
set_real_ip_from 2001:0db8::/32;

Directives

set_real_ip_from

Syntax set_real_ip_from address | CIDR | unix:;
Default —
Context stream, server

3.2. References and Indexes 358

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Defines trusted addresses that are known to send correct replacement addresses. If the special value
unix: is specified, all UNIX domain sockets will be trusted.

Built-in Variables

$realip_remote_addr

keeps the original client address

$realip_remote_port

keeps the original client port

Return

Allows sending a specified value to the client and then closing the connection.

Configuration Example

server {
listen 12345;
return $time_iso8601;

}

Directives

return

Syntax return value;
Default —
Context server

Specifies a value to send to the client. The value can contain text, variables, and their combination.

Set

The module allows setting a value for a variable.

Configuration Example

server {
listen 12345;
set $true 1;

}

Directives

set

Syntax set $variable value;
Default —
Context server

Sets a value for the specified variable. The value can contain text, variables, and their combination.

3.2. References and Indexes 359

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Split Clients

The module generates variables for A/B testing, canary releases, and other scenarios that route a specific
percentage of clients to one server or configuration while directing the rest elsewhere.

Configuration Example

stream {
...
split_clients "${remote_addr}AAA" $upstream {

0.5% feature_test1;
2.0% feature_test2;
* production;

}

server {
...
proxy_pass $upstream;

}
}

Directives

split_clients

Syntax split_clients string $variable { ... }
Default —
Context stream

Creates a $variable by hashing the string ; variables in the string are substituted, the result is hashed,
and the hash value is used to select the string value of the $variable.

The hash function uses MurmurHash2 (32-bit), and its entire value range (0 to 4294967295) is mapped
to buckets in order of appearance; the percentages determine the size of the buckets. A wildcard (*)
may appear at the end; hashes that don't fall into other buckets are mapped to its assigned value.

Example:

split_clients "${remote_addr}AAA" $variant {
0.5% .one;
2.0% .two;
* "";

}

Here, after substitution in the $remote_addr AAA string, the hash values are distributed as follows:

• values from 0 to 21474835 (0.5%) yield .one

• values from 21474836 to 107374180 (2%) yield .two

• values from 107374181 to 4294967295 (all others) yield "" (an empty string)

SSL

Provides the necessary support for a stream proxy server to work with the SSL/TLS protocol.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-stream_ssl_module build option.

In packages and images from our repos, the module is included in the build.

3.2. References and Indexes 360

https://en.wikipedia.org/wiki/MurmurHash#MurmurHash2

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

s Important

This module requires the OpenSSL library.

Configuration Example

To reduce the processor load it is recommended to

• set the number of worker processes equal to the number of processors,

• enable the shared session cache,

• disable the built-in session cache,

• and possibly increase the session lifetime (by default, 5 minutes):

worker_processes auto;

stream {

#...

server {
listen 12345 ssl;

ssl_protocols TLSv1.2 TLSv1.3;
ssl_ciphers AES128-SHA:AES256-SHA:RC4-SHA:DES-CBC3-SHA:RC4-MD5;
ssl_certificate /usr/local/angie/conf/cert.pem;
ssl_certificate_key /usr/local/angie/conf/cert.key;
ssl_session_cache shared:SSL:10m;
ssl_session_timeout 10m;

...
}

Directives

ssl_alpn

Syntax ssl_alpn protocol ...;
Default —
Context stream, server

Specifies the list of supported ALPN protocols. One of the protocols must be negotiated if the client
uses ALPN:

map $ssl_alpn_protocol $proxy {
h2 127.0.0.1:8001;
http/1.1 127.0.0.1:8002;

}

server {
listen 12346;
proxy_pass $proxy;
ssl_alpn h2 http/1.1;

}

3.2. References and Indexes 361

https://datatracker.ietf.org/doc/html/rfc7301

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssl_certificate

Syntax ssl_certificate file;
Default —
Context stream, server

Specifies a file with the certificate in the PEM format for the given server. If intermediate certificates
should be specified in addition to a primary certificate, they should be specified in the same file in the
following order: the primary certificate comes first, then the intermediate certificates. A secret key in
the PEM format may be placed in the same file.

This directive can be specified multiple times to load certificates of different types, for example, RSA
and ECDSA:

server {
listen 12345 ssl;

ssl_certificate example.com.rsa.crt;
ssl_certificate_key example.com.rsa.key;

ssl_certificate example.com.ecdsa.crt;
ssl_certificate_key example.com.ecdsa.key;

...
}

Only OpenSSL 1.0.2 or higher supports separate certificate chains for different certificates. With older
versions, only one certificate chain can be used.

s Important

Variables can be used in the file name when using OpenSSL 1.0.2 or higher:

ssl_certificate $ssl_server_name.crt;
ssl_certificate_key $ssl_server_name.key;

Note that using variables implies that a certificate will be loaded for each SSL handshake, and this may
have a negative impact on performance.

The value "data:$variable" can be specified instead of the file, which loads a certificate from a variable
without using intermediate files.

Note that inappropriate use of this syntax may have its security implications, such as writing secret key
data to error log .

ssl_certificate_key

Syntax ssl_certificate_key file;
Default —
Context stream, server

Specifies a file with the secret key in the PEM format for the given server.

s Important

3.2. References and Indexes 362

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Variables can be used in the file name when using OpenSSL 1.0.2 or higher.

The value engine:`name`:id can be specified instead of the file, which loads a secret key with a
specified id from the OpenSSL engine name.

The value "data:$variable" can be specified instead of the file, which loads a secret key from a variable
without using intermediate files. Note that inappropriate use of this syntax may have its security
implications, such as writing secret key data to error log .

ssl_ciphers

Syntax ssl_ciphers ciphers;
Default ssl_ciphers HIGH:!aNULL:!MD5;
Context stream, server

Specifies the enabled ciphers. The ciphers are specified in the format understood by the OpenSSL library,
for example:

ssl_ciphers ALL:!aNULL:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP;

The list of ciphers depends on the version of OpenSSL installed. The full list can be viewed using the
openssl ciphers command.

. Attention

The ssl_ciphers directive does not configure ciphers for TLS 1.3 when using OpenSSL. To tune
TLS 1.3 ciphers with OpenSSL, use the ssl_conf_command directive, which was added to support
advanced SSL configuration.

• In LibreSSL, TLS 1.3 ciphers can be configured using ssl_ciphers.

• In BoringSSL, TLS 1.3 ciphers cannot be configured at all.

ssl_client_certificate

Syntax ssl_client_certificate file;
Default —
Context stream, server

Specifies a file with trusted CA certificates in the PEM format used to verify client certificates and OCSP
responses if ssl_stapling is enabled.

The list of certificates will be sent to clients. If this is not desired, the ssl_trusted_certificate directive
can be used.

ssl_conf_command

Syntax ssl_conf_command name value;
Default —
Context stream, server

Sets arbitrary OpenSSL configuration commands.

3.2. References and Indexes 363

https://docs.openssl.org/master/man3/SSL_CONF_cmd/

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

s Important

The directive is supported when using OpenSSL 1.0.2 or higher. To configure TLS 1.3 ciphers with
OpenSSL, use the ciphersuites command.

Several ssl_conf_command directives can be specified on the same level:

ssl_conf_command Options PrioritizeChaCha;
ssl_conf_command Ciphersuites TLS_CHACHA20_POLY1305_SHA256;

These directives are inherited from the previous configuration level if and only if there are no
ssl_conf_command directives defined on the current level.

³ Caution

Note that configuring OpenSSL directly might result in unexpected behavior.

ssl_crl

Syntax ssl_crl file;
Default —
Context stream, server

Specifies a file with revoked certificates (CRL) in the PEM format used to verify client certificates.

ssl_dhparam

Syntax ssl_dhparam file;
Default —
Context stream, server

Specifies a file with DH parameters for DHE ciphers.

³ Caution

By default no parameters are set, and therefore DHE ciphers will not be used.

ssl_early_data

Syntax ssl_early_data on | off;
Default ssl_early_data off;
Context stream, server

Enables or disables TLS 1.3 early data.

s Important

The directive is supported when using OpenSSL 1.1.1 or higher or BoringSSL.

3.2. References and Indexes 364

https://datatracker.ietf.org/doc/html/rfc8446#section-2.3
https://boringssl.googlesource.com/boringssl/

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssl_ecdh_curve

Syntax ssl_ecdh_curve curve;
Default ssl_ecdh_curve auto;
Context stream, server

Specifies a curve for ECDHE ciphers.

s Important

When using OpenSSL 1.0.2 or higher, it is possible to specify multiple curves, for example:

ssl_ecdh_curve prime256v1:secp384r1;

The special value auto instructs Angie to use a list built into the OpenSSL library when using OpenSSL
1.0.2 or higher, or prime256v1 with older versions.

s Important

When using OpenSSL 1.0.2 or higher, this directive sets the list of curves supported by the server.
Thus, in order for ECDSA certificates to work, it is important to include the curves used in the
certificates.

ssl_handshake_timeout

Syntax ssl_handshake_timeout time;
Default ssl_handshake_timeout 60s;
Context stream, server

Specifies a timeout for the SSL handshake to complete.

ssl_ocsp

Syntax ssl_ocsp on | off | leaf;
Default ssl_ocsp off;
Context stream, server

Enables OCSP validation of the client certificate chain. The leaf parameter enables validation of the
client certificate only.

For the OCSP validation to work, the ssl_verify_client directive should be set to on or optional.

To resolve the OCSP responder hostname, the resolver directive should also be specified.

Example:

ssl_verify_client on;
ssl_ocsp on;
resolver 127.0.0.53;

3.2. References and Indexes 365

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssl_ocsp_cache

Syntax ssl_ocsp_cache off | [shared:name:size];
Default ssl_ocsp_cache off;
Context http, server

Sets name and size of the cache that stores client certificates status for OCSP validation. The cache is
shared between all worker processes. A cache with the same name can be used in several virtual servers.

The off parameter prohibits the use of the cache.

ssl_ocsp_responder

Syntax ssl_ocsp_responder uri ;
Default —
Context http, server

Overrides the URI of the OCSP responder specified in the "Authority Information Access" certificate
extension for validation of client certificates.

Only http:// OCSP responders are supported:

ssl_ocsp_responder http://ocsp.example.com/;

ssl_ntls

Added in version 1.2.0.

Syntax ssl_ntls on | off;
Default ssl_ntls off;
Context stream, server

Enables server-side support for NTLS using TongSuo library.

listen ... ssl;
ssl_ntls on;

s Important

Build Angie using the --with-ntls build option and link with NTLS-enabled SSL library

./configure --with-openssl=../Tongsuo-8.3.0 \
--with-openssl-opt=enable-ntls \
--with-ntls

ssl_password_file

Syntax ssl_password_file file;
Default —
Context stream, server

Specifies a file with passphrases for secret keys where each passphrase is specified on a separate line.
Passphrases are tried in turn when loading the key.

3.2. References and Indexes 366

https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.2.1
https://github.com/Tongsuo-Project/Tongsuo

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Example:

stream {
ssl_password_file /etc/keys/global.pass;
...

server {
listen 127.0.0.1:12345;
ssl_certificate_key /etc/keys/first.key;

}

server {
listen 127.0.0.1:12346;

named pipe can also be used instead of a file
ssl_password_file /etc/keys/fifo;
ssl_certificate_key /etc/keys/second.key;

}
}

ssl_prefer_server_ciphers

Syntax ssl_prefer_server_ciphers on | off;
Default ssl_prefer_server_ciphers off;
Context stream, server

Specifies that server ciphers should be preferred over client ciphers when the SSLv3 and TLS protocols
are used.

ssl_protocols

Syntax ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1] [TLSv1.2] [TLSv1.3];
Default ssl_protocols TLSv1.2 TLSv1.3;
Context stream, server

Changed in version 1.2.0: TLSv1.3 parameter added to default set.

Enables the specified protocols.

s Important

The TLSv1.1 and TLSv1.2 parameters work only when OpenSSL 1.0.1 or higher is used.

The TLSv1.3 parameter works only when OpenSSL 1.1.1 or higher is used.

ssl_session_cache

Syntax ssl_session_cache off | none | [builtin[:size]] [shared:name:size];
Default ssl_session_cache none;
Context stream, server

Sets the types and sizes of caches that store session parameters. A cache can be of any of the following
types:

3.2. References and Indexes 367

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

off the use of a session cache is strictly prohibited: Angie explicitly tells a client that
sessions may not be reused.

none the use of a session cache is gently disallowed: Angie tells a client that sessions
may be reused, but does not actually store session parameters in the cache.

builtin a cache built in OpenSSL; used by one worker process only. The cache size is
specified in sessions. If size is not given, it is equal to 20480 sessions. Use of the
built-in cache can cause memory fragmentation.

shared a cache shared between all worker processes. The cache size is specified in bytes;
one megabyte can store about 4000 sessions. Each shared cache should have an
arbitrary name. A cache with the same name can be used in several servers.
It is also used to automatically generate, store, and periodically rotate TLS
session ticket keys unless configured explicitly using the ssl_session_ticket_key
directive.

Both cache types can be used simultaneously, for example:

ssl_session_cache builtin:1000 shared:SSL:10m;

but using only shared cache without the built-in cache should be more efficient.

ssl_session_ticket_key

Syntax ssl_session_ticket_key file;
Default —
Context stream, server

Sets a file with the secret key used to encrypt and decrypt TLS session tickets. The directive is necessary
if the same key has to be shared between multiple servers. By default, a randomly generated key is used.

If several keys are specified, only the first key is used to encrypt TLS session tickets. This allows
configuring key rotation, for example:

ssl_session_ticket_key current.key;
ssl_session_ticket_key previous.key;

The file must contain 80 or 48 bytes of random data and can be created using the following command:

openssl rand 80 > ticket.key

Depending on the file size either AES256 (for 80-byte keys) or AES128 (for 48-byte keys) is used for
encryption.

ssl_session_tickets

Syntax ssl_session_tickets on | off;
Default ssl_session_tickets on;
Context stream, server

Enables or disables session resumption through TLS session tickets.

3.2. References and Indexes 368

https://datatracker.ietf.org/doc/html/rfc5077

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssl_session_timeout

Syntax ssl_session_timeout time;
Default ssl_session_timeout 5m;
Context stream, server

Specifies a time during which a client may reuse the session parameters.

ssl_stapling

Syntax ssl_stapling on | off;
Default ssl_stapling off;
Context http, server

Enables or disables stapling of OCSP responses by the server. Example:

ssl_stapling on;
resolver 127.0.0.53;

For the OCSP stapling to work, the certificate of the server certificate issuer should be known. If the
ssl_certificate file does not contain intermediate certificates, the certificate of the server certificate issuer
should be present in the ssl_trusted_certificate file.

. Attention

For the resolution of the OCSP responder hostname, the resolver directive should also be specified.

ssl_stapling_file

Syntax ssl_stapling_file file;
Default —
Context http, server

When set, the stapled OCSP response will be taken from the specified file instead of querying the OCSP
responder specified in the server certificate.

The file should be in the DER format as produced by the openssl ocsp command.

ssl_stapling_responder

Syntax ssl_stapling_responder uri ;
Default —
Context http, server

Overrides the URI of the OCSP responder specified in the "Authority Information Access" certificate
extension.

Only http:// OCSP responders are supported:

ssl_stapling_responder http://ocsp.example.com/;

3.2. References and Indexes 369

https://datatracker.ietf.org/doc/html/rfc6066#section-8
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.2.1

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssl_stapling_verify

Syntax ssl_stapling_verify on | off;
Default ssl_stapling_verify off;
Context http, server

Enables or disables verification of OCSP responses by the server.

For verification to work, the certificate of the server certificate issuer, the root certificate, and all inter-
mediate certificates should be configured as trusted using the ssl_trusted_certificate directive.

ssl_trusted_certificate

Syntax ssl_trusted_certificate file;
Default —
Context stream, server

Specifies a file with trusted CA certificates in the PEM format used to verify client certificates.

In contrast to the certificate set by ssl_client_certificate, the list of these certificates will not be sent to
clients.

ssl_verify_client

Syntax ssl_verify_client on | off | optional | optional_no_ca;
Default ssl_verify_client off;
Context stream, server

Enables verification of client certificates. The verification result is stored in the $ssl_client_verify
variable. If an error has occurred during the client certificate verification or a client has not presented
the required certificate, the connection is closed.

optional requests the client certificate and verifies it if the certificate is present.
optional_no_ca requests the client certificate but does not require it to be signed by a trusted CA

certificate. This is intended for the use in cases when a service that is external
to Angie performs the actual certificate verification.

ssl_verify_depth

Syntax ssl_verify_depth number ;
Default ssl_verify_depth 1;
Context stream, server

Sets the verification depth in the client certificates chain.

Built-in Variables

The stream_ssl module supports the following variables:

3.2. References and Indexes 370

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$ssl_alpn_protocol

returns the protocol selected by ALPN during the SSL handshake, or an empty string otherwise.

$ssl_cipher

returns the name of the cipher used for an established SSL connection.

$ssl_ciphers

returns the list of ciphers supported by the client. Known ciphers are listed by names, unknown are
shown in hexadecimal, for example:

AES128-SHA:AES256-SHA:0x00ff

s Important

The variable is fully supported only when using OpenSSL version 1.0.2 or higher. With older versions,
the variable is available only for new sessions and lists only known ciphers.

$ssl_client_cert

returns the client certificate in the PEM format for an established SSL connection, with each line except
the first prepended with the tab character.

$ssl_client_fingerprint

returns the SHA1 fingerprint of the client certificate for an established SSL connection.

$ssl_client_i_dn

returns the "issuer DN" string of the client certificate for an established SSL connection according to
RFC 2253.

$ssl_client_raw_cert

returns the client certificate in the PEM format for an established SSL connection.

$ssl_client_s_dn

returns the "subject DN" string of the client certificate for an established SSL connection according to
RFC 2253.

$ssl_client_serial

returns the serial number of the client certificate for an established SSL connection.

$ssl_client_v_end

returns the end date of the client certificate.

$ssl_client_v_remain

returns the number of days until the client certificate expires.

3.2. References and Indexes 371

https://datatracker.ietf.org/doc/html/rfc2253
https://datatracker.ietf.org/doc/html/rfc2253

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$ssl_client_v_start

returns the start date of the client certificate.

$ssl_client_verify

returns the result of client certificate verification: SUCCESS, FAILED:reason and NONE if a certificate was
not present.

$ssl_curve

returns the negotiated curve used for SSL handshake key exchange process. Known curves are listed by
names, unknown are shown in hexadecimal, for example:

prime256v1

s Important

The variable is supported only when using OpenSSL version 3.0 or higher. With older versions, the
variable value will be an empty string.

$ssl_curves

returns the list of curves supported by the client. Known curves are listed by names, unknown are shown
in hexadecimal, for example:

0x001d:prime256v1:secp521r1:secp384r1

s Important

The variable is supported only when using OpenSSL version 1.0.2 or higher. With older versions, the
variable value will be an empty string.

The variable is available only for new sessions.

$ssl_early_data

returns "1" if TLS 1.3 early data is used and the handshake is not complete, otherwise "".

$ssl_protocol

returns the protocol of an established SSL connection.

$ssl_server_cert_type

takes the values RSA, DSA, ECDSA, ED448, ED25519, SM2, RSA-PSS, or unknown depending on the type of
server certificate and key.

$ssl_server_name

returns the server name requested through SNI.

$ssl_session_id

returns the session identifier of an established SSL connection.

3.2. References and Indexes 372

http://en.wikipedia.org/wiki/Server_Name_Indication

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$ssl_session_reused

returns r if an SSL session was reused, or "." otherwise.

SSL Preread

Enables extracting information from the ClientHello message without terminating TLS, such as the server
name requested via SNI or protocols advertised in ALPN.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-stream_ssl_preread_module build option.

In packages and images from our repos, the module is included in the build.

Configuration Example

Selecting an upstream by server name

map $ssl_preread_server_name $name {
backend.example.com backend;
default backend2;

}

upstream backend {
server 192.168.0.1:12345;
server 192.168.0.2:12345;

}

upstream backend2 {
server 192.168.0.3:12345;
server 192.168.0.4:12345;

}

server {
listen 12346;
proxy_pass $name;
ssl_preread on;

}

Selecting a server by protocol

map $ssl_preread_alpn_protocols $proxy {
~\bh2\b 127.0.0.1:8001;
~\bhttp/1.1\b 127.0.0.1:8002;
~\bxmpp-client\b 127.0.0.1:8003;

}

server {
listen 9000;
proxy_pass $proxy;
ssl_preread on;

}

Selecting a server by SSL protocol version

map $ssl_preread_protocol $upstream {
"" ssh.example.com:22;

3.2. References and Indexes 373

https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.2
https://datatracker.ietf.org/doc/html/rfc6066#section-3
https://datatracker.ietf.org/doc/html/rfc7301

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

"TLSv1.2" new.example.com:443;
default tls.example.com:443;

}

ssh and https at the same port
server {

listen 192.168.0.1:443;
proxy_pass $upstream;
ssl_preread on;

}

Directives

ssl_preread

Syntax ssl_preread on | off;
Default ssl_preread off;
Context stream, server

Enables extracting information from the ClientHello message at the preread phase.

Built-in Variables

$ssl_preread_protocol

Highest SSL protocol version supported by the client.

$ssl_preread_server_name

Server name requested via SNI.

$ssl_preread_alpn_protocols

List of protocols advertised by the client through ALPN. The values are comma separated.

Upstream

Provides context for describing groups of servers that can be used in the proxy_pass directive.

Configuration Example

upstream backend {
hash $remote_addr consistent;
zone backend 1m;

server backend1.example.com:1935 weight=5;
server unix:/tmp/backend3;
server backend3.example.com service=_example._tcp resolve;

server backup1.example.com:1935 backup;
server backup2.example.com:1935 backup;

}

resolver 127.0.0.53 status_zone=resolver;

server {

3.2. References and Indexes 374

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

listen 1936;
proxy_pass backend;

}

Directives

upstream

Syntax upstream name { ... }
Default —
Context stream

Describes a group of servers. Servers can listen on different ports. In addition, servers listening on TCP
and UNIX domain sockets can be mixed.

Example:

upstream backend {
server backend1.example.com:1935 weight=5;
server 127.0.0.1:1935 max_fails=3 fail_timeout=30s;
server unix:/tmp/backend2;
server backend3.example.com:1935 resolve;

server backup1.example.com:1935 backup;
}

By default, connections are distributed between the servers using a weighted round-robin balancing
method. In the above example, each 7 connections will be distributed as follows: 5 connections go to
backend1.example.com:1935 and one connection to each of the second and third servers.

If an error occurs during communication with a server, the connection will be passed to the next server,
and so on until all of the functioning servers will be tried. If communication with all servers fails, the
connection will be closed.

server

Syntax server address [parameters];
Default —
Context upstream

Defines the address and other parameters of a server. The address can be specified as a domain name or
IP address with an obligatory port, or as a UNIX domain socket path specified after the unix: prefix.
A domain name that resolves to several IP addresses defines multiple servers at once.

The following parameters can be defined:

weight=number Sets the weight of the server; by default, 1.
max_conns=number Limits the maximum number of simultaneous active connections to the proxied

server. Default value is 0, meaning there is no limit. If the server group does not
reside in the shared memory , the limitation works per each worker process.

max_fails=number — sets the number of unsuccessful attempts to communicate with the server that
should happen in the duration set by fail_timeout to consider the server unavailable; it is then retried
after the same duration.

Here, an unsuccessful attempt is an error or timeout while establishing a connection with the server.

3.2. References and Indexes 375

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ò Note

If a server directive in a group resolves into multiple servers, its max_fails setting applies to each
server individually.

If an upstream contains only one server after all its server directives are resolved, the max_fails
setting has no effect and will be ignored.

max_fails=1 The default number of attempts.
max_fails=0 Disables the accounting of attempts.

fail_timeout=time — sets the period of time during which a specified number of unsuccessful attempts
to communicate with the server (max_fails) should happen to consider the server unavailable. The
server then remains unavailable for the same amount of time before it is retried.

By default, this is set to 10 seconds.

ò Note

If a server directive in a group resolves into multiple servers, its fail_timeout setting applies to
each server individually.

If an upstream contains only one server after all its server directives are resolved, the fail_timeout
setting has no effect and will be ignored.

backup Marks the server as a backup server. It will be passed requests when the primary
servers are unavailable.

down Marks the server as permanently unavailable.
drain (PRO) Marks the server as draining; this means it receives only requests from the sessions

that were bound earlier with sticky . Otherwise it behaves similarly to down.

³ Caution

The backup parameter cannot be used along with the hash and random load balancing methods.

The down and drain parameters are mutually exclusive.

Added in version 1.3.0.

3.2. References and Indexes 376

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

resolve Enables monitoring changes to the list of IP addresses that corresponds to a
domain name, updating it without a configuration reload. The group must reside
in a shared memory zone; also, a resolver must be defined.

service=name Enables resolving DNS SRV records and sets the service name. For this parameter
to work, the resolve parameter must also be specified, without specifying the
server port in the hostname.
If there are no dots in the service name, the name is formed according to the
RFC standard: the service name is prefixed with _, then _tcp is added after a
dot. Thus, the service name http will result in _http._tcp.
Angie resolves the SRV records by combining the normalized service name and
the hostname and obtaining the list of servers for the combination via DNS, along
with their priorities and weights.

• Top-priority SRV records (ones that share the minimum priority value)
resolve into primary servers, and other records become backup servers. If
backup is set with server, top-priority SRV records resolve into backup
servers, and other records are ignored.

• Weight is similar to the weight parameter of the server directive. If weight
is set by both the directive and the SRV record, the weight set by the
directive is used.

This example will look up the _http._tcp.backend.example.com record:

server backend.example.com service=http resolve;

Added in version 1.2.0: Angie

Added in version 1.1.0-P1: Angie PRO

sid=id Sets the server ID in the group. If the parameter is not specified, the ID is set
as a hexadecimal MD5 hash of the IP address and port or UNIX domain socket
path.

Added in version 1.4.0.

slow_start=time Sets the time for a server to recover its weight when returning to service with
round-robin or least_conn load balancing methods.
If the parameter is set and a server is again considered healthy after a failure
according to max_fails and upstream_probe (PRO), the server gradually recovers
its designated weight over the specified time period.
If the parameter is not set, in a similar situation the server immediately starts
working with its designated weight.

ò Note

If only one server is specified in the upstream, slow_start has no effect and will be ignored.

state (PRO)

Added in version 1.4.0: PRO

3.2. References and Indexes 377

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Syntax state file;
Default —
Context upstream

Specifies the file where the upstream server list is persistently stored. When installing from our packages,
a dedicated directory /var/lib/angie/state/ (/var/db/angie/state/ on FreeBSD) is created with
appropriate permissions for storing such files, so you only need to add the filename in the configuration:

upstream backend {

zone backend 1m;
state /var/lib/angie/state/<FILE NAME>;

}

The server list format here is similar to s_server. The file contents change whenever servers are modified
in the /config/stream/upstreams/ section via the configuration API. The file is read at Angie startup or
configuration reload.

³ Caution

To use the state directive in an upstream block, there should be no server directives in it, but a
shared memory zone (zone) is required.

zone

Syntax zone name [size];
Default —
Context upstream

Defines the name and size of the shared memory zone that stores the group's configuration and runtime
state, shared between worker processes. Multiple groups can use the same zone. In this case, it is
sufficient to specify the size only once.

backup_switch (PRO)

Added in version 1.10.0: PRO

Syntax backup_switch permanent[=time];
Default —
Context upstream

The directive enables the ability to start server selection not from the primary group, but from the active
group, i.e., the one where a server was successfully found previously. If a server cannot be found in the
active group for the next request, and the search moves to the backup group, this backup group becomes
active, and subsequent requests are first directed to servers in this group.

If the permanent parameter is defined without a time value, the group remains active after selection,
and automatic re-checking of groups with lower priority levels does not occur. If time is specified, the
active status of the group expires after the specified interval, and the load balancer again checks groups
with lower priority levels, returning to them if the servers are working normally.

Example:

3.2. References and Indexes 378

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

upstream media_backend {
server primary1.example.com:1935;
server primary2.example.com:1935;

server reserve1.example.com:1935 backup;
server reserve2.example.com:1935 backup;

backup_switch permanent=2m;
}

If the load balancer switches from primary servers to the backup group, all subsequent requests are
handled by this backup group for 2 minutes. After 2 minutes expire, the load balancer re-checks the
primary servers and makes them active again if they are working normally.

feedback (PRO)

Added in version 1.7.0: PRO

Syntax feedback variable [inverse] [factor=number] [account=condition_variable];
Default —
Context upstream

Enables a feedback-based load balancing mechanism for the upstream. It dynamically adjusts load
balancing decisions by multiplying each proxied server's weight by the average feedback value, which
changes over time based on the variable value and is subject to an optional condition.

The following parameters can be specified:

variable The variable from which the feedback value is taken. It should represent a per-
formance or health metric; it is assumed to be provided by the server.
The value is evaluated with each response from the server and factored into the
moving average according to inverse and factor settings.

inverse If the parameter is set, the feedback value is interpreted inversely: lower values
indicate better performance.

factor The factor by which the feedback value is weighted when calculating the average.
Valid values are integers from 0 to 99. Default is 90.
The average is calculated using the exponential smoothing formula.
The larger the factor, the less new values affect the average; if 90 is specified,
90% of the previous value will be taken and only 10% of the new value.

account Specifies a condition variable that controls how connections are accounted for in
the calculation. The average value is updated with the feedback value only if the
condition variable is not equal to "" or "0".

ò Note

By default, traffic from probes is not included in the calculation; combining
the $upstream_probe variable with account allows including them or even
excluding everything else.

Example:

upstream backend {

zone backend 1m;

feedback $feedback_value factor=80 account=$condition_value;

3.2. References and Indexes 379

https://en.wikipedia.org/wiki/Exponential_smoothing

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

server backend1.example.com:1935 weight=1;
server backend2.example.com:1935 weight=2;

}

map $protocol $feedback_value {
"TCP" 100;
"UDP" 75;
default 10;

}

map $upstream_probe $condition_value {
"high_priority" "1";
"low_priority" "0";
default "1";

}

This configuration categorizes servers by feedback levels based on protocols used in individual sessions,
and also adds a condition on $upstream_probe to account only for high_priority probes or regular
client sessions.

hash

Syntax hash key [consistent];
Default —
Context upstream

Specifies a load balancing method for the group where client-server mapping is determined using a hashed
key value. The key can contain text, variables, and their combinations. Usage example:

hash $remote_addr;

The method is compatible with the Perl Cache::Memcached library.

If the consistent parameter is specified, the ketama consistent hashing method will be used instead
of the above method. The method ensures that when a server is added to or removed from the group,
only a minimal number of keys will be remapped to other servers. Using the method for caching servers
provides a higher cache hit ratio. The method is compatible with the Perl Cache::Memcached::Fast
library with the ketama_points parameter set to 160.

least_conn

Syntax least_conn;
Default —
Context upstream

Specifies a load balancing method for the group where a connection is passed to the server with the least
number of active connections, taking into account server weights. If several servers are suitable, they are
selected cyclically (round-robin) with their weights taken into account.

3.2. References and Indexes 380

https://metacpan.org/pod/Cache::Memcached
https://metacpan.org/pod/Cache::Memcached::Fast

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

least_time (PRO)

Syntax least_time connect | first_byte | last_byte [factor=number]
[account=condition_variable];

Default —
Context upstream

Specifies a load balancing method for the group where the probability of passing a connection to an active
server is inversely proportional to its average response time; the smaller it is, the more connections the
server will receive.

connect The directive accounts for the average connection establishment time.
first_byte The directive uses the average time to receive the first byte of the response.
last_byte The directive uses the average time to receive the complete response.

Added in version 1.7.0: PRO

factor Serves the same function as response_time_factor (PRO) and overrides it if the
parameter is set.

account Specifies a condition variable that controls which connections are accounted for in
the calculation. The average value is updated only if the connection's condition
variable is not equal to "" or "0".

ò Note

By default, probes are not included in the calculation; combining the $up-
stream_probe variable with account allows including them or even excluding
everything else.

The current values are presented as connect_time, first_byte_time, and last_byte_time in the
server's health object among the upstream metrics in the API.

random

Syntax random [two];
Default —
Context upstream

Specifies a load balancing method for the group where a connection is passed to a randomly selected
server, taking into account server weights.

If the optional two parameter is specified, Angie randomly selects two servers and then chooses a server
using the specified method. The default method is least_conn, which passes a connection to the server
with the least number of active connections.

response_time_factor (PRO)

Syntax response_time_factor number ;
Default response_time_factor 90;
Context upstream

3.2. References and Indexes 381

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Sets the smoothing factor for the least_time (PRO) load balancing method, using the previous value
when calculating the average response time according to the exponential weighted moving average for-
mula.

The larger the specified number, the less new values influence the average; if 90 is specified, 90% of the
previous value will be taken, and only 10% of the new value. Valid values range from 0 to 99 inclusive.

The respective moving averages are presented as connect_time (connection establishment time),
first_byte_time (time to receive the first byte of the response), and last_byte_time (time to re-
ceive the complete response) in the server's health object among the stream upstream metrics in the
API.

ò Note

Only successful responses are considered in the calculation; what constitutes an unsuccessful response
is determined by the proxy_next_upstream directives.

sticky

Added in version 1.6.0: Angie

Added in version 1.6.0: Angie PRO

Syntax sticky route $variable...;
sticky learn zone=zone create=$create_var1... lookup=$lookup_var1...
[connect] [norefresh] [timeout=time];
sticky learn lookup=$lookup_var1... remote_action=uri
remote_result=$remote_var ;

Default —
Context upstream

Configures the binding of client sessions to proxied servers in the mode specified by the first parameter;
to drain requests from servers that have the sticky directive configured, use the drain option (PRO)
in the server block.

. Attention

The sticky directive must be used after all directives that set the load balancing method; otherwise,
it won't work.

route mode

This mode uses predefined route identifiers that can be embedded in connection properties accessible to
Angie. It is less flexible because it relies on predefined values but is better suited if such identifiers are
already in use.

Here, when establishing a connection, the proxied server can assign a route to the client and return its
identifier in a manner known to both. The value of the sid parameter of the server directive must be
used as the route identifier. Note that the parameter is additionally hashed if the sticky_secret directive
is set.

Subsequent connections from clients wishing to use this route must contain the server-issued identifier
in a way that ensures it ends up in Angie variables.

The directive parameters specify variables for routing. To select the server where the incoming connection
is routed, the first non-empty variable is used; it is then compared with the sid parameter of the server
directive. If selecting a server fails or the chosen server cannot accept the connection, another server is
selected according to the configured balancing method.

3.2. References and Indexes 382

https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Here, Angie looks for the route identifier in the $route variable, which gets its value based on
$ssl_preread_server_name (note that ssl_preread must be enabled):

stream {

map $ssl_preread_server_name $route {

a.example.com a;
b.example.com b;
default "";

}

upstream backend {

server 127.0.0.1:8081 sid=a;
server 127.0.0.1:8082 sid=b;

sticky route $route;
}

server {

listen 127.0.0.1:8080;

ssl_preread on;

proxy_pass backend;
}

}

learn mode (PRO)

This mode uses a dynamically generated key to bind a client to a specific proxied server; it is more flexible
because it assigns servers on the fly, stores sessions in a shared memory zone, and supports various ways
of passing session identifiers.

Here, a session is created based on connection properties from the proxied server. The create and
lookup parameters list variables indicating how new sessions are created and existing sessions are looked
up. Both parameters can be used multiple times.

The session identifier is the value of the first non-empty variable specified with create; for example, this
could be the name of the proxied server .

Sessions are stored in a shared memory zone; its name and size are set by the zone parameter. If a
session has been inactive for the time specified by timeout, it is deleted. The default is 1 hour.

By default, Angie extends the session lifetime, updating the last access timestamp with each use. The
norefresh parameter disables this behavior: the session will expire strictly by timeout, even if it con-
tinues to be used. This mode is useful when forced session termination after a time period is required,
for example, when integrating with external session managers.

Subsequent connections from clients wishing to use the session must contain its identifier in a way that
ensures it ends up in a non-empty variable specified with lookup; its value will then be matched against
sessions in shared memory. If selecting a server fails or the chosen server cannot handle the connection,
another server is selected according to the configured balancing method.

The connect parameter allows creating a session immediately after receiving response headers from the
proxied server. Without it, a session is created only after connection processing is complete.

In the example, Angie creates and looks up sessions using the $rdp_cookie variable:

3.2. References and Indexes 383

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

stream {

upstream backend {

server 127.0.0.1:3390 sid=a;
server 127.0.0.1:3391 sid=b;

sticky learn lookup=$rdp_cookie create=$rdp_cookie zone=sessions:1m;
}

server {

listen 127.0.0.1:3389;

ssl_preread on;

proxy_pass backend;
}

}

learn mode with remote_action (PRO 1.10.0+)

The remote_action and remote_result parameters allow dynamic assignment of session identifiers and
their management using a remote session store.

Angie relies entirely on the remote store: it does not cache sessions locally (although it allows caching
store responses via proxy_cache) and sends a separate request to the remote store every time a session
needs to be retrieved or created.

The remote_action parameter specifies the URI of the remote store, which should handle session lookup
and creation as follows:

• The store receives the session identifier from lookup and the locally proposed server identifier
associated with this session via custom headers or another method.

On the Angie side, two special variables are provided for this: $sticky_sessid and $sticky_sid ,
respectively. sticky_sid contains the value of the sid= parameter from the server directive in
the upstream block, if set, or the MD5 hash of the server name.

ò Note

If remote_action points to a location in the client context, variables are automatically
exported to the HTTP context with the stream_ prefix (e.g., $stream_sticky_sessid,
$stream_sticky_sid). This allows direct use in HTTP directives without additional con-
figuration.

Additionally, in this case, the remote_uri parameter applies, specifying the URI of the client
HTTP request to the specified location. By default, it equals /create.

• A 200 response from the remote store indicates that it has accepted the session and stored it with
the proposed values for future use.

• A 409 response from the remote store indicates that the given session identifier already exists. In
this case, the response must contain an alternative session identifier in the X-Sticky-Sid header.
Angie stores this identifier in the variable specified by the remote_result parameter.

Below is a simplified configuration example. The remote store returns the session identifier in the X-Sid
header and thus confirms or overrides Angie's choice:

http {

3.2. References and Indexes 384

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

client {

location @sticky_client1 {

use variables from the stream upstream;
it adds these variables to the HTTP context with the stream_* prefix
proxy_set_header X-Sticky-Sessid $stream_sticky_sessid;
proxy_set_header X-Sticky-Sid $stream_sticky_sid;
proxy_set_header X-Sticky-Last $msec;
proxy_pass http://127.0.0.1:8080;

proxy_cache remote;
proxy_cache_valid 200 1d;
proxy_cache_key $scheme$proxy_host$request_uri$stream_sticky_sessid;

}
}

}

stream {

upstream u {

server 127.0.0.1:8081;
server 127.0.0.1:8082;

sticky learn lookup=$remote_addr # stream variable
remote_action=@sticky_client1 # location from client block
remote_result=$upstream_http_x_sid # HTTP variable
remote_uri=/foo; # default is /create

}

server {

listen 127.0.0.1:8080;
proxy_pass u;

}
}

sticky_strict

Added in version 1.6.0: Angie

Added in version 1.6.0: Angie PRO

Syntax sticky_strict on | off;
Default sticky_strict off;
Context upstream

When enabled, causes Angie to return a connection error to the client if the desired server is unavailable,
instead of using any other available server as it would when no servers in the group are available.

sticky_secret

Added in version 1.6.0: Angie

Added in version 1.6.0: Angie PRO

3.2. References and Indexes 385

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Syntax sticky_secret string ;
Default —
Context upstream

Adds the string as salt to the MD5 hashing function for the sticky directive in route mode. The string
may contain variables, for example, $remote_addr :

upstream backend {
server 127.0.0.1:8081 sid=a;
server 127.0.0.1:8082 sid=b;

sticky route $route;
sticky_secret my_secret.$remote_addr;

}

Salt is appended after the hashed value; to independently verify the hashing mechanism:

$ echo -n "<VALUE><SALT>" | md5sum

Built-in Variables

The stream_upstream module supports the following built-in variables:

$sticky_sessid

Used with remote_action in sticky ; stores the initial session identifier taken from lookup.

$sticky_sid

Used with remote_action in sticky ; stores the server identifier previously associated with the session.

sticky_sid contains the value of the sid= parameter from the server directive in the upstream block,
if specified, or the MD5 hash of the server name.

$upstream_addr

stores the IP address and port, or the path to the UNIX domain socket of the upstream server. If several
servers were contacted during request processing, their addresses are separated by commas, e.g.:

192.168.1.1:1935, 192.168.1.2:1935, unix:/tmp/sock

If a server cannot be selected, the variable keeps the name of the server group.

$upstream_bytes_received

number of bytes received from an upstream server. Values from several connections are separated by
commas and colons like addresses in the $upstream_addr variable.

$upstream_bytes_sent

number of bytes sent to an upstream server. Values from several connections are separated by commas
and colons like addresses in the $upstream_addr variable.

$upstream_connect_time

time to connect to the upstream server; the time is kept in seconds with millisecond resolution. Times of
several connections are separated by commas and colons like addresses in the $upstream_addr variable.

3.2. References and Indexes 386

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$upstream_first_byte_time

time to receive the first byte of data; the time is kept in seconds with millisecond resolution. Times of
several connections are separated by commas like addresses in the $upstream_addr variable.

$upstream_session_time

session duration in seconds with millisecond resolution. Times of several connections are separated by
commas like addresses in the $upstream_addr variable.

$upstream_sticky_status

Status of sticky connections.

"" Connection routed to upstream without sticky enabled.
NEW Connection without sticky information.
HIT Connection with sticky information routed to the desired backend.
MISS Connection with sticky information routed to the backend selected by the load

balancing algorithm.

Values from multiple connections are separated by commas and colons, similar to addresses in the
$upstream_addr variable.

Upstream Probe

The module implements active health probes for stream_upstream.

Configuration Example

server {
listen ...;

...
proxy_pass backend;
upstream_probe_timeout 1s;

upstream_probe backend_probe
port=12345
interval=5s
test=$good
essential
fails=3
passes=3
max_response=512k
mode=onfail
"send=data:GET / HTTP/1.0\r\n\r\n";

}

ò Note

According to RFC 2616 (HTTP/1.1) and RFC 9110 (HTTP Semantics), HTTP headers must be
separated by a CRLF sequence (rn) rather than just n.

3.2. References and Indexes 387

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Directives

upstream_probe (PRO)

Added in version 1.4.0: PRO

Syntax upstream_probe name [port=number] [interval=time] [test=condition]
[essential [persistent]] [fails=number] [passes=number] [max_response=size]
[mode=always | idle | onfail] [udp] [send=string];

Default —
Context server

Defines an active health probe for servers within the upstream group specified in the proxy_pass directive
in the same server context where the upstream_probe directive is located.

A server passes the probe if the request to it succeeds, considering all parameter settings of the
upstream_probe directive and all parameters that affect how upstreams are used by the server context
where it is defined, including the proxy_next_upstream directive.

To make use of the probes, the upstream must have a shared memory zone (zone). One upstream may
be configured with several probes.

The following parameters are accepted:

name Mandatory name of the probe.
port Alternative port number for the probe request.
interval Interval between probes. By default — 5s.
test The condition for the probe, defined as a string of variables. If the variables'

substitution yields "" or "0", the probe is not passed.
essential If set, the initial state of the server is being checked, so the server doesn't receive

client requests until the probe is passed.
persistent Setting this parameter requires enabling essential first; persistent servers

that were deemed healthy prior to a configuration reload start receiving requests
without being required to pass this probe first.

fails Number of subsequent failed probes that renders the server unhealthy. By default
— 1.

passes Number of subsequent passed probes that renders the server healthy. By default
— 1.

max_response Maximum memory size for the response. If a zero value is specified, response
waiting is disabled. By default — 256k.

mode Probe mode, depending on the servers' health:
• always — servers are probed regardless of their state;
• idle — probes affect unhealthy servers and servers where interval has

elapsed since the last client request.
• onfail — only unhealthy servers are probed.

By default — always.
udp If specified, the UDP protocol is used for probing. By default, TCP is used for

probing.
send Data sent for the check; this can be a string with the prefix data: or a file name

with data (specified absolutely or relative to the /usr/local/angie/ directory).

Example:

upstream backend {
zone backend 1m;

server a.example.com;
server b.example.com;

3.2. References and Indexes 388

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

}

map $upstream_probe_response $good {
~200 "1";
default "";

}

server {
listen ...;

...
proxy_pass backend;
upstream_probe_timeout 1s;

upstream_probe backend_probe
port=12345
interval=5s
test=$good
essential
persistent
fails=3
passes=3
max_response=512k
mode=onfail
"send=data:GET / HTTP/1.0\r\n\r\n";

}

Details of probe operation:

• Initially, the server won't receive client requests until it passes all essential probes configured for
it, skipping persistent ones if the configuration was reloaded and the server was deemed healthy
prior to that. If there are no such probes, the server is considered healthy.

• The server is considered unhealthy and won't receive client requests, if any of the probes configured
for it hits fails or the server reaches max_fails.

• For an unhealthy server to be considered healthy again, all probes configured for it must reach
their respective passes; after that, max_fails is also considered.

Built-in Variables

The stream_upstream module supports the following built-in variables:

$upstream_probe (PRO)

Name of the currently active upstream_probe.

$upstream_probe_response (PRO)

Contents of the response received during an active probe configured by upstream_probe.

The core stream module implements basic functionality for handling TCP and UDP connections: this
includes defining server blocks, traffic routing, configuring proxying, SSL/TLS support, and managing
connections for streaming services, such as databases, DNS, and other protocols that operate over TCP
and UDP.

The other modules in this section extend this functionality, allowing you to flexibly configure and optimize
the stream server for various scenarios and requirements.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-stream build option. In packages and images from our repos, the module is included in the

3.2. References and Indexes 389

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

build.

Configuration Example

worker_processes auto;

error_log /var/log/angie/error.log info;

events {
worker_connections 1024;

}

stream {
upstream backend {

hash $remote_addr consistent;

server backend1.example.com:12345 weight=5;
server 127.0.0.1:12345 max_fails=3 fail_timeout=30s;
server unix:/tmp/backend3;

}

upstream dns {
server 192.168.0.1:53535;
server dns.example.com:53;

}

server {
listen 12345;
proxy_connect_timeout 1s;
proxy_timeout 3s;
proxy_pass backend;

}

server {
listen 127.0.0.1:53 udp reuseport;
proxy_timeout 20s;
proxy_pass dns;

}

server {
listen [::1]:12345;
proxy_pass unix:/tmp/stream.socket;

}
}

Directives

listen

Syntax listen address[:port] [ssl] [udp] [proxy_protocol] [setfib=number]
[fastopen=number] [backlog=number] [rcvbuf=size] [sndbuf=size]
[accept_filter=filter] [deferred] [bind] [ipv6only=on | off] [reuseport]
[so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]] [multipath];

Default —
Context server

3.2. References and Indexes 390

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Sets the address and port for the socket on which the server will accept connections. It is possible to
specify just the port, so Angie listens on all available IPv4 (and IPv6, if enabled) interfaces. The address
can also be a hostname, for example:

listen 127.0.0.1:12345;
listen *:12345;
listen 12345; # same as *:12345
listen localhost:12345;

IPv6 addresses are specified in square brackets:

listen [::1]:12345;
listen [::]:12345;

UNIX domain sockets are specified with the unix: prefix:

listen unix:/var/run/angie.sock;

Port ranges are specified with the first and last port separated by a hyphen:

listen 127.0.0.1:12345-12399;
listen 12345-12399;

s Important

Different servers must listen on different address:port pairs.

ssl allows specifying that all connections accepted on this port should work in SSL
mode.

udp configures a listening socket for working with datagrams. In order to handle
packets from the same address and port in the same session, the reuseport pa-
rameter should also be specified.

proxy_protocol allows specifying that all connections accepted on this port should use the
PROXY protocol.

The listen directive can have several additional parameters specific to socket-related system calls.

setfib=number sets the associated routing table, FIB (the SO_SETFIB option) for the listening
socket. This currently works only on FreeBSD.

fastopen=number enables "TCP Fast Open" for the listening socket and limits the maximum length
for the queue of connections that have not yet completed the three-way hand-
shake.

³ Caution

Do not enable this feature unless the server can handle receiving the same SYN packet with data
more than once.

3.2. References and Indexes 391

https://datatracker.ietf.org/doc/html/rfc7413#section-5.1
https://datatracker.ietf.org/doc/html/rfc7413#section-6.1

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

backlog=number sets the backlog parameter in the listen() call that limits the maximum length
for the queue of pending connections. By default, backlog is set to -1 on
FreeBSD, DragonFly BSD, and macOS, and to 511 on other platforms.

rcvbuf=size sets the receive buffer size (the SO_RCVBUF option) for the listening socket.
sndbuf=size sets the send buffer size (the SO_SNDBUF option) for the listening socket.
accept_filter=filterSets the name of accept filter (the SO_ACCEPTFILTER option) for the listening

socket that filters incoming connections before passing them to accept(). This
works only on FreeBSD and NetBSD 5.0+. Acceptable values are dataready and
httpready.

deferred instructs to use a deferred accept() (the TCP_DEFER_ACCEPT socket option) on
Linux.

bind this parameter instructs to make a separate bind() call for a given address:port
pair. The fact is that if there are several listen directives with the same port but
different addresses, and one of the listen directives listens on all addresses for the
given port (*:port), Angie will bind() only to *:port. It should be noted that the
getsockname() system call will be made in this case to determine the address that
accepted the connection. If the setfib, fastopen, backlog, rcvbuf, sndbuf,
accept_filter, deferred, ipv6only, reuseport, or so_keepalive parameters
are used then for a given address:port pair a separate bind() call will always be
made.

ipv6only=on |
off

this parameter determines (via the IPV6_V6ONLY socket option) whether an IPv6
socket listening on a wildcard address [::] will accept only IPv6 connections or
both IPv6 and IPv4 connections. This parameter is turned on by default. It can
only be set once on start.

reuseport this parameter instructs to create an individual listening socket for each worker
process (using the SO_REUSEPORT socket option on Linux 3.9+ and DragonFly
BSD, or SO_REUSEPORT_LB on FreeBSD 12+), allowing a kernel to distribute
incoming connections between worker processes. This currently works only on
Linux 3.9+, DragonFly BSD, and FreeBSD 12+.

³ Caution

Inappropriate use of this option may have its security implications.

multipath enables accepting connections via Multipath TCP (MPTCP) protocol, supported
in Linux kernel starting from version 5.6. This parameter is incompatible with
udp.

so_keepalive=on | off | [keepidle]:[keepintvl]:[keepcnt]

Configures the "TCP keepalive" behavior for the listening socket.

'' if this parameter is omitted then the operating system's settings will be in effect
for the socket

on the SO_KEEPALIVE option is turned on for the socket
off the SO_KEEPALIVE option is turned off for the socket

Some operating systems support setting of TCP keepalive parameters on a per-socket basis using the
TCP_KEEPIDLE, TCP_KEEPINTVL, and TCP_KEEPCNT socket options. On such systems (currently, Linux
2.4+, NetBSD 5+, and FreeBSD 9.0-STABLE), they can be configured using the keepidle, keepintvl, and
keepcnt parameters. One or two parameters may be omitted, in which case the system default setting
for the corresponding socket option will be in effect.

For example,

so_keepalive=30m::10

3.2. References and Indexes 392

https://en.wikipedia.org/wiki/Multipath_TCP

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

will set the idle timeout (TCP_KEEPIDLE) to 30 minutes, leave the probe interval
(TCP_KEEPINTVL) at its system default, and set the probes count (TCP_KEEPCNT) to 10 probes.

preread_buffer_size

Syntax preread_buffer_size size;
Default preread_buffer_size 16k;
Context stream, server

Specifies a size of the preread buffer.

preread_timeout

Syntax preread_timeout timeout ;
Default preread_timeout 30s;
Context stream, server

Specifies a timeout of the preread phase.

proxy_protocol_timeout

Syntax proxy_protocol_timeout timeout ;
Default proxy_protocol_timeout 30s;
Context stream, server

Specifies a timeout for reading the PROXY protocol header to complete. If no entire header is transmitted
within this time, the connection is closed.

resolver

Syntax resolver address ... [valid=time] [ipv4=on | off] [ipv6=on | off]
[status_zone=zone];

Default —
Context stream, server, upstream

Configures name servers used to resolve names of upstream servers into addresses, for example:

resolver 127.0.0.53 [::1]:5353;

The address can be specified as a domain name or IP address, with an optional port. If port is not
specified, the port 53 is used. Name servers are queried in a round-robin fashion.

By default, Angie caches answers using the TTL value of a response. The optional valid parameter allows
overriding it:

valid optional valid parameter allows overriding cached entry validity

resolver 127.0.0.53 [::1]:5353 valid=30s;

By default, Angie will look up both IPv4 and IPv6 addresses while resolving.

3.2. References and Indexes 393

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ipv4=off disables looking up of IPv4 addresses
ipv6=off disables looking up of IPv6 addresses

status_zone optional parameter; enables the collection of DNS server request and response
metrics (/status/resolvers/<zone>) in the specified zone.

� Tip

To prevent DNS spoofing, it is recommended to use DNS servers in a properly secured trusted local
network.

� Tip

When running in Docker, use the corresponding internal DNS server address such as 127.0.0.11.

resolver_timeout

Syntax resolver_timeout time;
Default resolver_timeout 30s;
Context stream, server, upstream

Sets a timeout for name resolution, for example:

resolver_timeout 5s;

server

Syntax server { ... }
Default —
Context stream

Sets the configuration for a server.

server_name

Syntax server_name name ...;
Default server_name "";
Context server

Sets names of a virtual server.

. Attention

In the stream module, the server_name directive is based on Server Name Indication (SNI) and only
works with TLS connections. To use it, you must configure TLS termination or enable TLS preread
in the corresponding server block.

3.2. References and Indexes 394

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Example configuration:

server {
listen 443 ssl;
server_name example.com www.example.com;
ssl_certificate /etc/angie/cert.pem;
ssl_certificate_key /etc/angie/key.pem;

}

The first name becomes the primary server name.

Server names can include an asterisk (*) to replace the first or last part of a name:

server {
server_name example.com *.example.com www.example.*;

}

These names are called wildcard names.

You can also use regular expressions in server names by preceding the name with a tilde (~):

server {
server_name www.example.com ~^www\d+\.example\.com$;

}

Regular expressions may include captures that can be used in other directives:

server {
server_name ~^(www\.)?(.+)$;

proxy_pass www.$2:12345;
}

Named captures in regular expressions create variables that can be used in other directives:

server {
server_name ~^(www\.)?(?<domain>.+)$;

proxy_pass www.$domain:12345;
}

If the directive's parameter is set to $hostname, the machine's hostname is inserted.

When searching for a virtual server by name, if the name matches more than one of the specified variants
(e.g., both a wildcard name and a regular expression match), the first matching variant will be chosen
in the following order of priority:

• The exact name

• The longest wildcard name starting with an asterisk, e.g., *.example.com

• The longest wildcard name ending with an asterisk, e.g., mail.*

• The first matching regular expression (in order of appearance in the configuration file)

server_names_hash_bucket_size

Syntax server_names_hash_bucket_size size;
Default server_names_hash_bucket_size 32|64|128;
Context stream

3.2. References and Indexes 395

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Sets the bucket size for the server names hash tables. The default value depends on the size of the
processor's cache line.

server_names_hash_max_size

Syntax server_names_hash_max_size size;
Default server_names_hash_max_size 512;
Context stream

Sets the maximum size of the server names hash tables.

status_zone

Syntax status_zone zone | key zone=zone[:count];
Default —
Context server

Allocates a shared memory zone to collect metrics for /status/stream/server_zones/<zone>.

Multiple server contexts can share the same zone for data collection.

The single-value zone syntax aggregates all metrics for the current context in one shared memory zone:

server {

listen 80;
server_name *.example.com;

status_zone single;
...

}

The alternative syntax allows specifying the following parameters:

key A string with variables, whose value determines the grouping of connections in the
zone. All connections producing identical values after substitution are grouped
together. If substitution yields an empty value, metrics aren't updated.

zone The name of the shared memory zone.
count (optional) The maximum number of separate groups for collecting metrics. If new key values

would exceed this limit, they are grouped under zone instead.
The default value is 1.

In the following example, all connections with the same $server_addr value are grouped into host_zone.
Metrics are collected separately for each unique $server_addr until the number of metric groups reaches
10. After that, any new $server_addr values will be added to the server_zone group:

stream {

upstream backend {
server 192.168.0.1:3306;
server 192.168.0.2:3306;
...

}

server {

3.2. References and Indexes 396

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

listen 3306;
proxy_pass backend;

status_zone $server_addr zone=server_zone:10;
}

}

The resulting metrics are split between individual servers in the API output.

stream

Syntax stream { ... }
Default —
Context main

Provides the configuration file context in which the stream server directives are specified.

tcp_nodelay

Syntax tcp_nodelay on | off;
Default tcp_nodelay on;
Context stream, server

Enables or disables the use of the TCP_NODELAY option. The option is enabled for both client
connections and connections to proxied servers.

variables_hash_bucket_size

Syntax variables_hash_bucket_size size;
Default variables_hash_bucket_size 64;
Context stream

Sets the bucket size for the variables hash table. The details of setting up hash tables are provided in a
separate document .

variables_hash_max_size

Syntax variables_hash_max_size size;
Default variables_hash_max_size 1024;
Context stream

Sets the maximum size of the variables hash table. The details of setting up hash tables are provided in
a separate document .

Built-in Variables

The stream core module supports the following variables:

3.2. References and Indexes 397

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$angie_version

Angie version

$binary_remote_addr

client address in a binary form, value's length is always 4 bytes for IPv4 addresses or 16 bytes for IPv6
addresses

$bytes_received

number of bytes received from a client

$bytes_sent

number of bytes sent to a client

$connection

connection serial number

$hostname

host name

$msec

current time in seconds with the milliseconds resolution

$pid

PID of the worker process

$protocol

protocol used to communicate with the client: TCP or UDP

$proxy_protocol_addr

client address from the PROXY protocol header. The PROXY protocol must be previously enabled by
setting the proxy_protocol parameter in the listen directive.

$proxy_protocol_port

client port from the PROXY protocol header. The PROXY protocol must be previously enabled by
setting the proxy_protocol parameter in the listen directive.

$proxy_protocol_server_addr

server address from the PROXY protocol header. The PROXY protocol must be previously enabled by
setting the proxy_protocol parameter in the listen directive.

$proxy_protocol_server_port

server port from the PROXY protocol header. The PROXY protocol must be previously enabled by
setting the proxy_protocol parameter in the listen directive.

3.2. References and Indexes 398

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$proxy_protocol_tlv_<name>

TLV obtained from the PROXY protocol header. The name can be a TLV type name or its numeric
value. In the latter case, the value is specified in hexadecimal and must start with 0x :

$proxy_protocol_tlv_alpn
$proxy_protocol_tlv_0x01

SSL TLVs can also be accessed by both TLV type name and its numeric value, both must start with
ssl_:

$proxy_protocol_tlv_ssl_version
$proxy_protocol_tlv_ssl_0x21

The following TLV type names are supported:

• alpn (0x01) - upper layer protocol used over the connection

• authority (0x02) - host name value passed by the client

• unique_id (0x05) - unique connection identifier

• netns (0x30) - namespace name

• ssl (0x20) - SSL TLV structure in binary format

The following SSL TLV type names are supported:

• ssl_version (0x21) - SSL version used in client connection

• ssl_cn (0x22) - certificate Common Name

• ssl_cipher (0x23) - name of the used cipher

• ssl_sig_alg (0x24) - algorithm used to sign the certificate

• ssl_key_alg (0x25) - public key algorithm

Also supported is the following special SSL TLV type name:

• ssl_verify - client certificate verification result: 0 if the client presented a certificate and it was
successfully verified, or non-zero otherwise

The PROXY protocol must be previously enabled by setting the proxy_protocol parameter in the listen
directive.

$remote_addr

client address

$remote_port

client port

$server_addr

address of the server which accepted a connection. Computing a value of this variable usually requires
one system call. To avoid a system call, the listen directives must specify addresses and use the bind
parameter.

$server_port

port of the server which accepted a connection

3.2. References and Indexes 399

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$session_time

session duration in seconds with a milliseconds resolution

$status

session status, can be one of the following:

200 session completed successfully
400 client data could not be parsed, for example, the PROXY protocol header
403 access forbidden, for example, when access is limited for certain client addresses
500 internal server error
502 bad gateway, for example, if an upstream server could not be selected or reached
503 service unavailable, for example, when access is limited by the number of connec-

tions

$time_iso8601

local time in the ISO 8601 standard format

$time_local

local time in the Common Log Format

Mail Module

Auth HTTP

The module enables subrequest-based authentication by sending an additional HTTP request before
processing the main request. If the subrequest returns a 2xx status, the main request proceeds; if
it returns 401 or 403, the appropriate error is sent to the user, while any other response triggers a 500
error. This approach is typically used to delegate authentication to external services, unify authentication
across applications, or integrate with third-party systems like OAuth or LDAP.

Directives

auth_http

Syntax auth_http uri ;
Default —
Context mail, server

Sets the URL of the HTTP authentication server. The protocol is described below .

auth_http_header

Syntax auth_http_header header value;
Default —
Context mail, server

Appends the specified header to requests sent to the authentication server. This header can be used as
a shared secret to verify that the request comes from Angie. For example:

auth_http_header X-Auth-Key "secret_string";

3.2. References and Indexes 400

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

auth_http_pass_client_cert

Syntax auth_http_pass_client_cert on | off;
Default auth_http_pass_client_cert off;
Context mail, server

Appends the "Auth-SSL-Cert" header with the client certificate in PEM format (urlencoded) to requests
sent to the authentication server.

auth_http_timeout

Syntax auth_http_timeout time;
Default auth_http_timeout 60s;
Context mail, server

Sets the timeout for communication with the authentication server.

Protocol

The HTTP protocol is used to communicate with the authentication server. The data in the response
body is ignored; information is passed only in the headers.

Examples of requests and responses:

Request:

GET /auth HTTP/1.0
Host: localhost
Auth-Method: plain # plain/apop/cram-md5/external
Auth-User: user
Auth-Pass: password
Auth-Protocol: imap # imap/pop3/smtp
Auth-Login-Attempt: 1
Client-IP: 192.0.2.42
Client-Host: client.example.org

Good response:

HTTP/1.0 200 OK
Auth-Status: OK
Auth-Server: 198.51.100.1
Auth-Port: 143

Bad response:

HTTP/1.0 200 OK
Auth-Status: Invalid login or password
Auth-Wait: 3

If there is no "Auth-Wait" header, an error will be returned and the connection will be closed. The
current implementation allocates memory for each authentication attempt. The memory is freed only at
the end of a session. Therefore, the number of invalid authentication attempts in a single session must be
limited — the server must respond without the "Auth-Wait" header after 10-20 attempts (the attempt
number is passed in the "Auth-Login-Attempt" header).

When APOP or CRAM-MD5 is used, the request-response will look as follows:

3.2. References and Indexes 401

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

GET /auth HTTP/1.0
Host: localhost
Auth-Method: apop
Auth-User: user
Auth-Salt: <238188073.1163692009@mail.example.com>
Auth-Pass: auth_response
Auth-Protocol: imap
Auth-Login-Attempt: 1
Client-IP: 192.0.2.42
Client-Host: client.example.org

Good response:

HTTP/1.0 200 OK
Auth-Status: OK
Auth-Server: 198.51.100.1
Auth-Port: 143
Auth-Pass: plain-text-pass

If the "Auth-User" header exists in the response, it overrides the username used to authenticate with
the backend.

For SMTP, the response additionally takes into account the "Auth-Error-Code" header — if it exists,
it is used as a response code in case of an error. Otherwise, the 535 5.7.0 code will be added to the
"Auth-Status" header by default.

For example, if the following response is received from the authentication server:

HTTP/1.0 200 OK
Auth-Status: Temporary server problem, try again later
Auth-Error-Code: 451 4.3.0
Auth-Wait: 3

then the SMTP client will receive an error

451 4.3.0 Temporary server problem, try again later

If proxying SMTP does not require authentication, the request will look as follows:

GET /auth HTTP/1.0
Host: localhost
Auth-Method: none
Auth-User:
Auth-Pass:
Auth-Protocol: smtp
Auth-Login-Attempt: 1
Client-IP: 192.0.2.42
Client-Host: client.example.org
Auth-SMTP-Helo: client.example.org
Auth-SMTP-From: MAIL FROM: <>
Auth-SMTP-To: RCPT TO: <postmaster@mail.example.com>

For SSL/TLS client connections, the "Auth-SSL" header is added, and "Auth-SSL-Verify" will contain
the result of client certificate verification, if enabled : SUCCESS, FAILED:reason, and NONE if a certificate
was not present.

When the client certificate was present, its details are passed in the following request head-
ers: "Auth-SSL-Subject", "Auth-SSL-Issuer", "Auth-SSL-Serial", and "Auth-SSL-Fingerprint". If
auth_http_pass_client_cert is enabled, the certificate itself is passed in the "Auth-SSL-Cert" header.

3.2. References and Indexes 402

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

The protocol and cipher of the established connection are passed in the "Auth-SSL-Protocol" and "Auth-
SSL-Cipher" headers. The request will look as follows:

GET /auth HTTP/1.0
Host: localhost
Auth-Method: plain
Auth-User: user
Auth-Pass: password
Auth-Protocol: imap
Auth-Login-Attempt: 1
Client-IP: 192.0.2.42
Auth-SSL: on
Auth-SSL-Protocol: TLSv1.3
Auth-SSL-Cipher: TLS_AES_256_GCM_SHA384
Auth-SSL-Verify: SUCCESS
Auth-SSL-Subject: /CN=example.com
Auth-SSL-Issuer: /CN=example.com
Auth-SSL-Serial: C07AD56B846B5BFF
Auth-SSL-Fingerprint: 29d6a80a123d13355ed16b4b04605e29cb55a5ad

When the PROXY protocol is used, its details are passed in the following request headers: "Proxy-
Protocol-Addr", "Proxy-Protocol-Port", "Proxy-Protocol-Server-Addr", and "Proxy-Protocol-Server-
Port".

IMAP

The module enables IMAP mail protocol support, allowing the server to interact with mail storage sys-
tems. It establishes connections to IMAP servers, processes common commands such as listing mailboxes
and retrieving messages, and provides secure authentication and message status management.

Directives

imap_auth

Syntax imap_auth method ...;
Default imap_auth plain;
Context mail, server

Sets permitted methods of authentication for IMAP clients. Supported methods are:

plain LOGIN, AUTH=PLAIN
login AUTH=LOGIN
cram-md5 AUTH=CRAM-MD5. In order for this method to work, the password must be

stored unencrypted.
external AUTH=EXTERNAL

Plain text authentication methods (the LOGIN command, AUTH=PLAIN, and AUTH=LOGIN) are always
enabled, though if the plain and login methods are not specified, AUTH=PLAIN and AUTH=LOGIN will
not be automatically included in imap_capabilities.

imap_capabilities

Syntax imap_capabilities extension ...;
Default imap_capabilities IMAP4 IMAP4rev1 UIDPLUS;
Context mail, server

3.2. References and Indexes 403

https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc4616
https://datatracker.ietf.org/doc/html/draft-murchison-sasl-login-00
https://datatracker.ietf.org/doc/html/rfc2195
https://datatracker.ietf.org/doc/html/rfc4422

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Sets the IMAP protocol extensions list that is passed to the client in response to the CAPABILITY
command. The authentication methods specified in the imap_auth directive and STARTTLS are auto-
matically added to this list depending on the starttls directive value.

It makes sense to specify the extensions supported by the IMAP backends to which the clients are proxied
(if these extensions are related to commands used after the authentication, when Angie transparently
proxies a client connection to the backend).

imap_client_buffer

Syntax imap_client_buffer size;
Default imap_client_buffer 4k|8k;
Context mail, server

Sets the size of the buffer used for reading IMAP commands. By default, the buffer size is equal to one
memory page. This is either 4K or 8K, depending on a platform.

POP3

The module enables POP3 mail protocol support, allowing the server to download messages from mail
servers. It connects to POP3 servers, retrieves message headers and content, provides secure authenti-
cation, and manages message statuses such as downloaded or deleted.

Directives

pop3_auth

Syntax pop3_auth method ...;
Default pop3_auth plain;
Context mail, server

Sets permitted methods of authentication for POP3 clients. Supported methods are:

plain USER/PASS, AUTH PLAIN, AUTH LOGIN
apop APOP. In order for this method to work, the password must be stored unen-

crypted.
cram-md5 AUTH=CRAM-MD5. In order for this method to work, the password must be

stored unencrypted.
external AUTH=EXTERNAL

Plain text authentication methods (USER/PASS, AUTH PLAIN and AUTH LOGIN) are always enabled, though
if the plain method is not specified, AUTH PLAIN and AUTH LOGIN will not be automatically included in
pop3_capabilities.

pop3_capabilities

Syntax pop3_capabilities extension ...;
Default pop3_capabilities TOP USER UIDL;
Context mail, server

Sets the POP3 protocol extensions list that is passed to the client in response to the CAPA command.
The authentication methods specified in the pop3_auth directive (SASL extension) and STLS are auto-
matically added to this list depending on the starttls directive value.

3.2. References and Indexes 404

https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc2595
https://datatracker.ietf.org/doc/html/rfc1939
https://datatracker.ietf.org/doc/html/rfc4616
https://datatracker.ietf.org/doc/html/draft-murchison-sasl-login-00
https://datatracker.ietf.org/doc/html/rfc1939
https://datatracker.ietf.org/doc/html/rfc2195
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc2449
https://datatracker.ietf.org/doc/html/rfc2449
https://datatracker.ietf.org/doc/html/rfc2595

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

It makes sense to specify the extensions supported by the POP3 backends to which the clients are proxied
(if these extensions are related to commands used after the authentication, when Angie transparently
proxies the client connection to the backend).

Proxy

The module enables support for mail protocols (POP3, IMAP, SMTP), allowing the server to act as a
proxy between clients and mail servers. It establishes connections with servers, performs secure authen-
tication using plain text, SSL/TLS, or STARTTLS, properly routes client traffic, and supports flexible
authentication method and server selection.

Directives

proxy_buffer

Syntax proxy_buffer size;
Default proxy_buffer 4k|8k;
Context mail, server

Sets the size of the buffer used for proxying. By default, the buffer size is equal to one memory page.
Depending on a platform, it is either 4K or 8K.

proxy_pass_error_message

Syntax proxy_pass_error_message on | off;
Default proxy_pass_error_message off;
Context mail, server

Determines whether to pass the error message obtained during authentication on the backend to the
client.

Usually, if authentication in Angie is successful, the backend cannot return an error. If it nevertheless
returns an error, it means some internal error has occurred. In such cases the backend message may
contain information that should not be shown to the client. However, responding with an error for the
correct password is normal behavior for some POP3 servers. The directive should be enabled in this
case.

proxy_protocol

Syntax proxy_protocol on | off;
Default proxy_protocol off;
Context mail, server

Enables the PROXY protocol for connections to a backend.

proxy_smtp_auth

Syntax proxy_smtp_auth on | off;
Default proxy_smtp_auth off;
Context mail, server

Enables or disables user authentication on the SMTP backend using the AUTH command.

If XCLIENT is also enabled, then the XCLIENT command will not send the LOGIN parameter.

3.2. References and Indexes 405

http://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxy_timeout

Syntax proxy_timeout time;
Default proxy_timeout 24h;
Context mail, server

Sets the timeout between two successive read or write operations on client or proxied server connections.
If no data is transmitted within this time, the connection is closed.

xclient

Syntax xclient on | off;
Default xclient on;
Context mail, server

Enables or disables the passing of the XCLIENT command with client parameters when connecting to
the SMTP backend.

With XCLIENT, the MTA is able to write client information to the log and apply various limitations based
on this data.

If XCLIENT is enabled then Angie passes the following commands when connecting to the backend:

• EHLO with the server name

• XCLIENT

• EHLO or HELO, as passed by the client

If the name found by the client IP address points to the same address, it is passed in the NAME parameter
of the XCLIENT command. If the name could not be found, points to a different address, or resolver
is not specified, then [UNAVAILABLE] is passed in the NAME parameter. If an error has occurred in the
process of resolving, the [TEMPUNAVAIL] value is used.

If XCLIENT is disabled, Angie passes the EHLO command with the server name when connecting to the
backend if the client has passed EHLO, or HELO with the server name, otherwise.

RealIP

The module is used to change the client address and port to the ones sent in the PROXY protocol
header. The PROXY protocol must be previously enabled by setting the proxy_protocol parameter in
the listen directive.

Configuration Example

listen 110 proxy_protocol;

set_real_ip_from 192.168.1.0/24;
set_real_ip_from 192.168.2.1;
set_real_ip_from 2001:0db8::/32;

Directives

set_real_ip_from

Syntax set_real_ip_from address | CIDR | unix:;
Default —
Context mail, server

3.2. References and Indexes 406

http://www.postfix.org/XCLIENT_README.html

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Defines trusted addresses that are known to send correct replacement addresses. If the special value
unix: is specified, all UNIX domain sockets will be trusted.

SMTP

The module enables support for the SMTP mail protocol, allowing the server to proxy outgoing email
traffic between clients and mail servers. It establishes connections to SMTP servers, supports secure
authentication using LOGIN or PLAIN methods, provides STARTTLS and SSL/TLS encryption, and
routes client requests based on authentication results.

Directives

smtp_auth

Syntax smtp_auth method ...;
Default smtp_auth plain login;
Context mail, server

Sets permitted methods of SASL authentication for SMTP clients. Supported methods are:

plain AUTH PLAIN
login AUTH LOGIN
cram-md5 AUTH CRAM-MD5. In order for this method to work, the password must be

stored unencrypted.
external AUTH EXTERNAL
none Authentication is not required

Plain text authentication methods (AUTH PLAIN and AUTH LOGIN) are always enabled, though if the
plain and login methods are not specified, AUTH PLAIN and AUTH LOGIN will not be automatically
included in smtp_capabilities.

smtp_capabilities

Syntax smtp_capabilities extension ...;
Default —
Context mail, server

Sets the SMTP protocol extensions list that is passed to the client in response to the EHLO command.
The authentication methods specified in the smtp_auth directive and STARTTLS are automatically
added to this list depending on the starttls directive value.

It makes sense to specify the extensions supported by the MTA to which the clients are proxied (if these
extensions are related to commands used after authentication, when Angie transparently proxies the
client connection to the backend).

smtp_client_buffer

Syntax smtp_client_buffer size;
Default smtp_client_buffer 4k|8k;
Context mail, server

Sets the size of the buffer used for reading SMTP commands. By default, the buffer size is equal to one
memory page. This is either 4K or 8K, depending on the platform.

3.2. References and Indexes 407

https://datatracker.ietf.org/doc/html/rfc2554
https://datatracker.ietf.org/doc/html/rfc4616
https://datatracker.ietf.org/doc/html/draft-murchison-sasl-login-00
https://datatracker.ietf.org/doc/html/rfc2195
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc3207

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

smtp_greeting_delay

Syntax smtp_greeting_delay time;
Default smtp_greeting_delay 0;
Context mail, server

Allows setting a delay before sending an SMTP greeting in order to reject clients who fail to wait for the
greeting before sending SMTP commands.

SSL

The module enables SSL/TLS encryption support for mail proxy protocols (POP3, IMAP, SMTP),
allowing secure communication between clients and the server. It provides SSL/TLS encryption for
incoming connections, supports STARTTLS upgrades, manages certificates and keys, and controls SSL
settings such as ciphers and protocol versions.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-mail_ssl_module build option.

In packages and images from our repos, the module is included in the build.

s Important

This module requires the OpenSSL library.

Configuration Example

To reduce the processor load it is recommended to

• set the number of worker processes equal to the number of processors,

• enable the shared session cache,

• disable the built-in session cache,

• and possibly increase the session lifetime (by default, 5 minutes):

worker_processes auto;

mail {

...

server {
listen 993 ssl;

ssl_protocols TLSv1.2 TLSv1.3;
ssl_ciphers AES128-SHA:AES256-SHA:RC4-SHA:DES-CBC3-SHA:RC4-MD5;
ssl_certificate /usr/local/angie/conf/cert.pem;
ssl_certificate_key /usr/local/angie/conf/cert.key;
ssl_session_cache shared:SSL:10m;
ssl_session_timeout 10m;

...
}

3.2. References and Indexes 408

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Directives

ssl_certificate

Syntax ssl_certificate file;
Default —
Context mail, server

Specifies a file with the certificate in the PEM format for the given server. If intermediate certificates
should be specified in addition to a primary certificate, they should be specified in the same file in the
following order: the primary certificate comes first, then the intermediate certificates. A secret key in
the PEM format may be placed in the same file.

This directive can be specified multiple times to load certificates of different types, for example, RSA
and ECDSA:

server {
listen 993 ssl;

ssl_certificate example.com.rsa.crt;
ssl_certificate_key example.com.rsa.key;

ssl_certificate example.com.ecdsa.crt;
ssl_certificate_key example.com.ecdsa.key;

...
}

Only OpenSSL 1.0.2 or higher supports separate certificate chains for different certificates. With older
versions, only one certificate chain can be used.

The value "data:certificate" can be specified instead of the file, which loads a certificate without using
intermediate files.

Note that inappropriate use of this syntax may have its security implications, such as writing secret key
data to error log .

ssl_certificate_key

Syntax ssl_certificate_key file;
Default —
Context mail, server

Specifies a file with the secret key in the PEM format for the given server.

The value engine:`name`:id can be specified instead of the file, which loads a secret key with a
specified id from the OpenSSL engine name.

The value "data:key" can be specified instead of the file, which loads a secret key without using
intermediate files. Note that inappropriate use of this syntax may have its security implications, such as
writing secret key data to error log .

ssl_ciphers

Syntax ssl_ciphers ciphers;
Default ssl_ciphers HIGH:!aNULL:!MD5;
Context mail, server

3.2. References and Indexes 409

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Specifies the enabled ciphers. The ciphers are specified in the format understood by the OpenSSL library,
for example:

ssl_ciphers ALL:!aNULL:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP;

The list of ciphers depends on the version of OpenSSL installed. The full list can be viewed using the
openssl ciphers command.

. Attention

The ssl_ciphers directive does not configure ciphers for TLS 1.3 when using OpenSSL. To tune
TLS 1.3 ciphers with OpenSSL, use the ssl_conf_command directive, which was added to support
advanced SSL configuration.

• In LibreSSL, TLS 1.3 ciphers can be configured using ssl_ciphers.

• In BoringSSL, TLS 1.3 ciphers cannot be configured at all.

ssl_client_certificate

Syntax ssl_client_certificate file;
Default —
Context mail, server

Specifies a file with trusted CA certificates in the PEM format used to verify client certificates.

The list of certificates will be sent to clients. If this is not desired, the ssl_trusted_certificate directive
can be used.

ssl_conf_command

Syntax ssl_conf_command name value;
Default —
Context mail, server

Sets arbitrary OpenSSL configuration commands.

s Important

The directive is supported when using OpenSSL 1.0.2 or higher. To configure TLS 1.3 ciphers with
OpenSSL, use the ciphersuites command.

Several ssl_conf_command directives can be specified on the same level:

ssl_conf_command Options PrioritizeChaCha;
ssl_conf_command Ciphersuites TLS_CHACHA20_POLY1305_SHA256;

These directives are inherited from the previous configuration level if and only if there are no
ssl_conf_command directives defined on the current level.

³ Caution

Note that configuring OpenSSL directly might result in unexpected behavior.

3.2. References and Indexes 410

https://docs.openssl.org/master/man3/SSL_CONF_cmd/

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssl_crl

Syntax ssl_crl file;
Default —
Context mail, server

Specifies a file with revoked certificates (CRL) in the PEM format used to verify client certificates.

ssl_dhparam

Syntax ssl_dhparam file;
Default —
Context mail, server

Specifies a file with DH parameters for DHE ciphers.

³ Caution

By default no parameters are set, and therefore DHE ciphers will not be used.

ssl_ecdh_curve

Syntax ssl_ecdh_curve curve;
Default ssl_ecdh_curve auto;
Context mail, server

Specifies a curve for ECDHE ciphers.

s Important

When using OpenSSL 1.0.2 or higher, it is possible to specify multiple curves, for example:

ssl_ecdh_curve prime256v1:secp384r1;

The special value auto instructs Angie to use a list built into the OpenSSL library when using OpenSSL
1.0.2 or higher, or prime256v1 with older versions.

s Important

When using OpenSSL 1.0.2 or higher, this directive sets the list of curves supported by the server.
Thus, in order for ECDSA certificates to work, it is important to include the curves used in the
certificates.

ssl_password_file

Syntax ssl_password_file file;
Default —
Context mail, server

3.2. References and Indexes 411

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Specifies a file with passphrases for secret keys where each passphrase is specified on a separate line.
Passphrases are tried in turn when loading the key.

Example:

mail {
ssl_password_file /etc/keys/global.pass;
...

server {
server_name mail1.example.com;
ssl_certificate_key /etc/keys/first.key;

}

server {
server_name mail2.example.com;

named pipe can also be used instead of a file
ssl_password_file /etc/keys/fifo;
ssl_certificate_key /etc/keys/second.key;

}
}

ssl_prefer_server_ciphers

Syntax ssl_prefer_server_ciphers on | off;
Default ssl_prefer_server_ciphers off;
Context mail, server

Specifies that server ciphers should be preferred over client ciphers when the SSLv3 and TLS protocols
are used.

ssl_protocols

Syntax ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1] [TLSv1.2] [TLSv1.3];
Default ssl_protocols TLSv1.2 TLSv1.3;
Context mail, server

Changed in version 1.2.0: TLSv1.3 parameter added to default set.

Enables the specified protocols.

s Important

The TLSv1.1 and TLSv1.2 parameters work only when OpenSSL 1.0.1 or higher is used.

The TLSv1.3 parameter works only when OpenSSL 1.1.1 or higher is used.

ssl_session_cache

Syntax ssl_session_cache off | none | [builtin[:size]] [shared:name:size];
Default ssl_session_cache none;
Context mail, server

3.2. References and Indexes 412

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Sets the types and sizes of caches that store session parameters. A cache can be of any of the following
types:

off the use of a session cache is strictly prohibited: Angie explicitly tells a client that
sessions may not be reused.

none the use of a session cache is gently disallowed: Angie tells a client that sessions
may be reused, but does not actually store session parameters in the cache.

builtin a cache built in OpenSSL; used by one worker process only. The cache size is
specified in sessions. If size is not given, it is equal to 20480 sessions. Use of the
built-in cache can cause memory fragmentation.

shared a cache shared between all worker processes. The cache size is specified in bytes;
one megabyte can store about 4000 sessions. Each shared cache should have an
arbitrary name. A cache with the same name can be used in several servers.
It is also used to automatically generate, store, and periodically rotate TLS
session ticket keys unless configured explicitly using the ssl_session_ticket_key
directive.

Both cache types can be used simultaneously, for example:

ssl_session_cache builtin:1000 shared:SSL:10m;

but using only shared cache without the built-in cache should be more efficient.

ssl_session_ticket_key

Syntax ssl_session_ticket_key file;
Default —
Context mail, server

Sets a file with the secret key used to encrypt and decrypt TLS session tickets. The directive is necessary
if the same key has to be shared between multiple servers. By default, a randomly generated key is used.

If several keys are specified, only the first key is used to encrypt TLS session tickets. This allows
configuring key rotation, for example:

ssl_session_ticket_key current.key;
ssl_session_ticket_key previous.key;

The file must contain 80 or 48 bytes of random data and can be created using the following command:

openssl rand 80 > ticket.key

Depending on the file size either AES256 (for 80-byte keys) or AES128 (for 48-byte keys) is used for
encryption.

ssl_session_tickets

Syntax ssl_session_tickets on | off;
Default ssl_session_tickets on;
Context mail, server

Enables or disables session resumption through TLS session tickets.

3.2. References and Indexes 413

https://datatracker.ietf.org/doc/html/rfc5077

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssl_session_timeout

Syntax ssl_session_timeout time;
Default ssl_session_timeout 5m;
Context mail, server

Specifies a time during which a client may reuse the session parameters.

ssl_trusted_certificate

Syntax ssl_trusted_certificate file;
Default —
Context mail, server

Specifies a file with trusted CA certificates in the PEM format used to verify client certificates.

In contrast to the certificate set by ssl_client_certificate, the list of these certificates will not be sent to
clients.

ssl_verify_client

Syntax ssl_verify_client on | off | optional | optional_no_ca;
Default ssl_verify_client off;
Context mail, server

Enables verification of client certificates. The verification result is passed in the "Auth-SSL-Verify"
header of the authentication request. If an error occurs during client certificate verification or a client
does not provide the required certificate, the connection is closed.

optional requests the client certificate and verifies it if the certificate is present
optional_no_ca requests the client certificate but does not require it to be signed by a trusted

CA certificate. This is intended for use in cases when a service that is external to
Angie performs the actual certificate verification. The contents of the certificate
are accessible through requests sent to the authentication server.

ssl_verify_depth

Syntax ssl_verify_depth number ;
Default ssl_verify_depth 1;
Context mail, server

Sets the verification depth in the client certificates chain.

starttls

Syntax starttls on | off | only;
Default starttls off;
Context mail, server

3.2. References and Indexes 414

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

on allow usage of the STLS command for the POP3 and the STARTTLS command
for the IMAP and SMTP;

off deny usage of the STLS and STARTTLS commands;
only require preliminary TLS transition.

The core mail module implements basic functionality for a mail proxy server: this includes support for
SMTP, IMAP, and POP3 protocols, configuring server blocks, mail request routing, user authentication,
and SSL/TLS support for securing mail connections.

The other modules in this section extend this functionality, allowing you to flexibly configure and optimize
the mail server for various scenarios and requirements.

When building from the source code, this module isn't built by default; it should be enabled with the
--with-mail build option. In packages and images from our repos, the module is included in the build.

Configuration Example

worker_processes auto;

error_log /var/log/angie/error.log info;

events {
worker_connections 1024;

}

mail {
server_name mail.example.com;
auth_http localhost:9000/cgi-bin/auth.cgi;

imap_capabilities IMAP4rev1 UIDPLUS IDLE LITERAL+ QUOTA;

pop3_auth plain apop cram-md5;
pop3_capabilities LAST TOP USER PIPELINING UIDL;

smtp_auth login plain cram-md5;
smtp_capabilities "SIZE 10485760" ENHANCEDSTATUSCODES 8BITMIME DSN;
xclient off;

server {
listen 25;
protocol smtp;

}
server {

listen 110;
protocol pop3;
proxy_pass_error_message on;

}
server {

listen 143;
protocol imap;

}
server {

listen 587;
protocol smtp;

}
}

3.2. References and Indexes 415

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Directives

listen

Syntax listen address[:port] [ssl] [proxy_protocol] [backlog=number]
[rcvbuf=size] [sndbuf=size] [bind] [ipv6only=on | off] [reuseport]
[so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

Default —
Context server

Sets the address and port for the socket on which the server will accept requests. It is possible to specify
just the port, so Angie listens on all available IPv4 (and IPv6, if enabled) interfaces. The address can
also be a hostname, for example:

listen 127.0.0.1:110;
listen *:110;
listen 110; # same as *:110
listen localhost:110;

IPv6 addresses are specified in square brackets:

listen [::1]:110;
listen [::]:110;

UNIX domain sockets are specified with the unix: prefix:

listen unix:/var/run/angie.sock;

s Important

Different servers must listen on different address:port pairs.

ssl allows specifying that all connections accepted on this port should work in SSL
mode.

proxy_protocol allows specifying that all connections accepted on this port should use the
PROXY protocol. Obtained information is passed to the authentication server
and can be used to change the client address.

The listen directive can have several additional parameters specific to socket-related system calls.

3.2. References and Indexes 416

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

backlog=number sets the backlog parameter in the listen() call that limits the maximum length
for the queue of pending connections. By default, backlog is set to -1 on
FreeBSD, DragonFly BSD, and macOS, and to 511 on other platforms.

rcvbuf=size sets the receive buffer size (the SO_RCVBUF option) for the listening socket.
sndbuf=size sets the send buffer size (the SO_SNDBUF option) for the listening socket.
bind this parameter instructs to make a separate bind() call for a given address:port

pair. The fact is that if there are several listen directives with the same port but
different addresses, and one of the listen directives listens on all addresses for
the given port (*:port), Angie will bind() only to *:port. It should be noted
that the getsockname() system call will be made in this case to determine the
address that accepted the connection. If the backlog, rcvbuf, sndbuf, ipv6only,
reuseport, or so_keepalive parameters are used then for a given address:port
pair a separate bind() call will always be made.

ipv6only=on |
off

this parameter determines (via the IPV6_V6ONLY socket option) whether an
IPv6 socket listening on a wildcard address [::] will accept only IPv6 connections
or both IPv6 and IPv4 connections. This parameter is turned on by default. It
can only be set once on start.

multipath enables accepting connections via Multipath TCP (MPTCP), supported in Linux
kernel version 5.6 and later.

so_keepalive=on | off | [keepidle]:[keepintvl]:[keepcnt]

Configures the "TCP keepalive" behavior for the listening socket.

'' if this parameter is omitted then the operating system's settings will be in effect
for the socket

on the SO_KEEPALIVE option is turned on for the socket
off the SO_KEEPALIVE option is turned off for the socket

Some operating systems support setting of TCP keepalive parameters on a per-socket basis using the
TCP_KEEPIDLE, TCP_KEEPINTVL, and TCP_KEEPCNT socket options. On such systems (currently, Linux
2.4+, NetBSD 5+, and FreeBSD 9.0-STABLE), they can be configured using the keepidle, keepintvl, and
keepcnt parameters. One or two parameters may be omitted, in which case the system default setting
for the corresponding socket option will be in effect.

For example,

so_keepalive=30m::10

will set the idle timeout (TCP_KEEPIDLE) to 30 minutes, leave the probe interval
(TCP_KEEPINTVL) at its system default, and set the probes count (TCP_KEEPCNT) to 10 probes.

mail

Syntax mail { ... }
Default —
Context main

Provides the configuration file context in which the mail server directives are specified.

max_commands

Added in version 1.7.0.

3.2. References and Indexes 417

https://en.wikipedia.org/wiki/Multipath_TCP

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Syntax max_commands number ;
Default max_commands 1000;
Context mail, server

Sets the maximum number of commands issued during authentication to enhance protection against DoS
attacks.

max_errors

Syntax max_errors number ;
Default max_errors 5;
Context mail, server

Sets the number of protocol errors after which the connection is closed.

protocol

Syntax protocol imap | pop3 | smtp;
Default —
Context server

Sets the protocol for a proxied server. Supported protocols are IMAP , POP3 , and SMTP .

If the directive is not set, the protocol can be detected automatically based on the well-known port
specified in the listen directive:

imap: 143, 993
pop3: 110, 995
smtp: 25, 587, 465

When building from source, unnecessary protocols can be disabled using the
--without-mail_imap_module, --without-mail_pop3_module, and --without-mail_smtp_module
build options.

resolver

Syntax resolver address ... [valid=time] [ipv4=on | off] [ipv6=on | off]
[status_zone=zone];

Default resolver off;
Context mail, server

Configures name servers used to find the client's hostname to pass it to the authentication server , and
in the XCLIENT command when proxying SMTP. For example:

resolver 127.0.0.53 [::1]:5353;

The address can be specified as a domain name or IP address, with an optional port. If port is not
specified, the port 53 is used. Name servers are queried in a round-robin fashion.

By default, Angie caches answers using the TTL value of a response. The optional valid parameter allows
overriding it:

valid optional valid parameter allows overriding cached entry validity

3.2. References and Indexes 418

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

resolver 127.0.0.53 [::1]:5353 valid=30s;

By default, Angie will look up both IPv4 and IPv6 addresses while resolving.

ipv4=off disables looking up of IPv4 addresses
ipv6=off disables looking up of IPv6 addresses
status_zone optional parameter, enables statistics collection for specified zone

� Tip

To prevent DNS spoofing, it is recommended configuring DNS servers in a properly secured trusted
local network.

� Tip

When running in Docker, use its internal DNS server address such as 127.0.0.11.

resolver_timeout

Syntax resolver_timeout time;
Default resolver_timeout 30s;
Context mail, server

Sets a timeout for DNS operations, for example:

resolver_timeout 5s;

server

Syntax server { ... }
Default —
Context mail

Sets the configuration for a server.

server_name

Syntax server_name name;
Default server_name hostname;
Context mail, server

Sets the server name that is used:

• in the initial POP3/SMTP server greeting;

• in the salt during the SASL CRAM-MD5 authentication;

• in the EHLO command when connecting to the SMTP backend, if the passing of the XCLIENT
command is enabled.

If the directive is not specified, the machine's hostname is used.

3.2. References and Indexes 419

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

timeout

Syntax timeout time;
Default timeout 60s;
Context mail, server

Sets the timeout that is used before proxying to the backend starts.

Google PerfTools Module

Enables profiling of Angie worker processes using Google Performance Tools. The module is intended
for Angie developers and allows them to analyze and optimize server performance by providing detailed
information about memory usage, CPU load, and other performance metrics.

When building from source code, this module isn't built by default; it should be enabled with the
--with-google_perftools_module build parameter.

s Important

This module requires the gperftools library.

Configuration Example

google_perftools_profiles /var/log/angie/perftools;

Profiles will be stored in files like /var/log/angie/perftools.<worker process PID>.

Directives

google_perftools_profiles

Syntax google_perftools_profiles file prefix ;
Default —
Context main

Sets the filename prefix where profiling information for the Angie worker process will be stored. The
worker process ID is appended at the end of the name after a dot, for example: /var/log/angie/
perftools.1234.

WASM Module

WAMR

The module provides integration with WebAssembly Micro Runtime for executing WASM code, adding
a number of runtime-specific directives to the wasm_modules context.

In our repositories, the module is built dynamically and is available as a separate package named
angie-module-wamr.

Configuration Example

wasm_modules {

wamr_heap_size 16k;

3.2. References and Indexes 420

https://github.com/gperftools/gperftools
https://github.com/gperftools/gperftools
https://github.com/bytecodealliance/wasm-micro-runtime

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

wamr_stack_size 16k;

load fft_transform.wasm id=fft;
}

Directives

wamr_heap_size

Syntax wamr_heap_size size;
Default wamr_heap_size 8k;
Context wasm_modules

Sets the heap size for an individual module instance.

wamr_global_heap_size

Syntax wamr_global_heap_size size;
Default wamr_global_heap_size 1m;
Context wasm_modules

Sets the heap size for the entire WAMR runtime.

wamr_stack_size

Syntax wamr_stack_size size;
Default wamr_stack_size 8k;
Context wasm_modules

Sets the stack size for an individual module instance.

Wasmtime

The module provides integration with the Wasmtime runtime for executing WASM code, adding a number
of runtime-specific directives to the wasm_modules context.

In our repositories, the module is built dynamically and is available as a separate package named
angie-module-wasmtime.

Configuration Example

wasm_modules {

wasmtime_stack_size 8k;

wasmtime_enable_wasi on;

load fft_transform.wasm id=fft;
}

3.2. References and Indexes 421

https://wasmtime.dev/

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Directives

wasmtime_enable_wasi

Syntax wasmtime_enable_wasi on | off;
Default wasmtime_enable_wasi on;
Context wasm_modules

Enables or disables the use of WebAssembly System Interface APIs that provide basic POSIX-like func-
tionality to WASM modules running in Angie.

ò Note

Angie-specific APIs can be explicitly allowed using the load directive.

wasmtime_stack_size

Syntax wasmtime_stack_size size;
Default wasmtime_stack_size 8k;
Context wasm_modules

Sets the max_wasm_stack value to the specified size, thus limiting the maximum amount of stack space
available for executing WASM code.

The core module that implements basic WASM functionality in Angie: it includes support for loading
alternative runtimes and WASM modules, as well as configuring their features and limits.

The other modules in this section extend this functionality, allowing you to flexibly configure and optimize
WASM capabilities for various scenarios and requirements.

In our repositories, the module is built dynamically and is available as a separate package named
angie-module-wasm.

Configuration Example

These directives load the core functionality
load_module modules/ngx_wasm_module.so;
load_module modules/ngx_wasm_core_module.so;

load_module modules/ngx_wasmtime_module.so;

Available here: https://git.angie.software/web-server/angie-wasm
load_module modules/ngx_http_wasm_host_module.so;

events {

}

wasm_modules {

#use wasmtime;

load ngx_http_handler.wasm id=handler;
load ngx_http_vars.wasm id=vars type=reactor;

}

3.2. References and Indexes 422

https://github.com/WebAssembly/WASI
https://wasi.dev/interfaces
https://wasi.dev/interfaces
https://docs.wasmtime.dev/api/wasmtime/struct.Config.html#method.max_wasm_stack

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

http {

wasm_var vars "ngx:wasi/var-utils#sum-entry" $rvar $arg_a $arg_b $arg_c $arg_d;

server {

listen *:8080;

location / {

return 200 "sum('$arg_a','$arg_b','$arg_c','$arg_d')=$rvar\n";
}

location /wasm {

client_max_body_size 20M;
wasm_content handler "ngx:wasi/http-handler-entry#handle-request";

}
}

}

Directives

load

Syntax load file id=identifier [fs=host_path:guest_path]... [api=api]... [type=command |
reactor]

Default —
Context wasm_modules

Loads a module from a disk file and assigns it a unique identifier (required parameter). During loading,
verification occurs to ensure the module can be instantiated.

The directive supports the following parameters:

fs Allows the guest to access a directory on the host. The parameter can be specified
multiple times for different directories.

api Explicitly restricts the list of APIs allowed for the module by listing them. If the
module attempts to use unavailable APIs (not listed here), an "API not found"
error is returned.
By default, all APIs are available to the module.

type Controls the lifecycle of the loaded module.
• In command mode, the machine executes once and its state is destroyed after

execution.
• In reactor mode, the machine effectively runs indefinitely, allowing code

to be executed multiple times. This requires careful memory management:
if resources are not freed, memory leaks can occur.

3.2. References and Indexes 423

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

wasm_modules

Syntax wasm_modules { ... };
Default —
Context main

A top-level directive that provides the configuration file context in which WASM directives should be
specified. It can contain commands for loading WASM modules and configuring parameters specific to
a particular runtime.

Core Module

Core Management of service files, processes, and other Angie modules.

HTTP Modules

HTTP Core functionality for processing HTTP requests and responses, managing the HTTP server, connections, and static files.
Access Access control based on IP addresses and CIDR ranges.
ACME Automatic retrieval and renewal of SSL certificates using the ACME protocol for HTTP servers.
Docker Dynamic updating of proxied server groups based on Docker container labels.
Addition Insertion of a specified snippet before or after the response body.
API RESTful HTTP interface for obtaining basic web server information and statistics in JSON format, as well as managing groups of proxied servers.
Auth Basic Basic HTTP authentication for access control based on username and password.
Auth Request Authorization using a subrequest to an external HTTP service.
AutoIndex Automatic directory listing without an index file.
Browser (deprecated) Browser identification based on the User-Agent header.
Charset Configuration and conversion of response encoding.
DAV File management on the server using the WebDAV protocol.
Empty GIF Serving a one-pixel transparent GIF.
FastCGI Proxying requests to a FastCGI server.
FLV Pseudo-streaming of Flash Video (FLV) files.
Geo Converting IP addresses into specified variable values.
GeoIP Obtaining IP address data based on geolocation using MaxMind GeoIP databases.
gRPC Proxying requests to a gRPC server.
GunZIP Decompressing GZip-compressed responses for modification and in cases where the client does not support compression.
GZip Compressing responses using the GZip method to save traffic.
GZip Static Serving static files pre-compressed using the GZip method.
Headers Modifying response header fields.
HTTP2 Processing requests using the HTTP/2 protocol.
HTTP3 Processing requests using the HTTP/3 protocol.
Image Filter Image transformation.
Index Configuration of index files that serve requests ending with a slash (/).
JS Handlers for extending functionality by specifying additional logic in njs, a subset of the JavaScript language.
Limit Conn Limiting the number of concurrent requests (active connections) for protection against overload.
Limit Req Limiting request frequency for protection against overload and password guessing.
Log Configuration of request logs for tracking resource access for monitoring and analysis purposes.
Map Converting variables based on predefined key-value pairs.
Memcached Retrieving responses from a Memcached server.
Mirror Mirroring requests to other servers.
MP4 Pseudo-streaming of MP4 files.
Perl Handlers for extending functionality by specifying additional logic in the Perl language.
Prometheus Server metrics in Prometheus-compatible format for monitoring and statistics collection.
Proxy Reverse proxying requests to other HTTP servers.
Random Index Random selection of an index file for requests ending with a slash (/).

continues on next page

3.2. References and Indexes 424

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Table 1 – continued from previous page

RealIP Determining client address and port when operating behind another proxy server.
Referer Validation of Referer header values.
Rewrite Request URI modification, redirects, variable setting, and conditional configuration selection.
SCGI Proxying requests to a SCGI server.
Secure Link Creating secure links with the ability to limit access time.
Slice Splitting requests into multiple subrequests for individual fragments for better caching of large responses.
Split Clients Creating variables for A/B testing, canary releases, sharding, and other scenarios requiring proportional group splitting.
SSI Processing SSI (Server Side Includes) commands in responses.
SSL SSL/TLS configuration for processing HTTPS requests.
Stub Status (deprecated) Global connection and request counters in text format.
Sub Search and replace fragments in the response body.
Upstream Configuration of proxied server groups for load balancing.
Upstream Probe Configuration of active health checks for proxied server groups.
UserID Issuing and processing cookies with unique client identifiers for session tracking and analytics.
uWSGI Proxying requests to a uWSGI server.
XSLT Transforming XML documents using the XSLT language.

Stream Modules

Stream Core stream server functionality for balancing TCP and UDP protocols at the L4 level.
Access Access control based on IP addresses and CIDR ranges.
ACME Automatic retrieval and renewal of SSL certificates using the ACME protocol for stream

servers.
Geo Converting IP addresses into specified variable values.
GeoIP Obtaining IP address data based on geolocation using MaxMind GeoIP databases.
JS Handlers for extending functionality by specifying additional logic in njs, a subset of the

JavaScript language.
Limit
Conn

Limiting the number of concurrent connections for protection against overload.

Log Configuration of session logs for tracking resource access for monitoring and analysis
purposes.

Map Converting variables based on predefined key-value pairs.
MQTT
Preread

Reading client identifier and username from MQTT connections before making load
balancing decisions.

Pass Passing accepted connections directly to a configured listening socket.
Proxy Configuration of proxying to other servers.
RDP Pre-
read

Reading cookies from RDP connections before making load balancing decisions.

RealIP Determining client address and port when operating behind another proxy server.
Return Sending a specified value to the client upon connection without further proxying.
Set Setting specified variable values.
Split
Clients

Creating variables for A/B testing, canary releases, sharding, and other scenarios re-
quiring proportional group splitting.

SSL SSL/TLS and DTLS protocol termination.
SSL Pre-
read

Extracting information from ClientHello messages without SSL/TLS termination and
before making load balancing decisions.

Upstream Configuration of proxied server groups for load balancing.
Upstream
Probe

Configuration of active health checks for proxied server groups.

3.2. References and Indexes 425

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Mail Modules

Mail Core mail proxy server functionality.
Auth
HTTP

User authentication and server selection for subsequent proxying using HTTP requests
to an external server.

IMAP IMAP protocol support.
POP3 POP3 protocol support.
Proxy Configuration of proxying to other servers.
RealIP Determining client address and port when operating behind another proxy server.
SMTP SMTP protocol support.
SSL SSL/TLS and StartTLS protocol support.

Google PerfTools Module

Google
PerfTools

Responsible for integration with the Google Performance Tools library for application
profiling and performance analysis.

WASM Modules

WASM Core WASM functionality enabling WASM code execution in Angie.
WAMR Integration with WebAssembly Micro Runtime.
Wasmtime Integration with the Wasmtime runtime environment.

3.2.2 Built-in Variables

HTTP Modules Stream Modules

$acme_cert_key_<name> $acme_cert_key_<name>
$acme_cert_<name> $acme_cert_<name>
$ancient_browser
$angie_version $angie_version
$arg_<name>
$args
$binary_remote_addr $binary_remote_addr
$body_bytes_sent

$bytes_received
$bytes_sent $bytes_sent
$connection $connection
$connection_requests
$connection_time
$connections_active
$connections_reading
$connections_writing
$connections_waiting
$content_length
$content_type
$cookie_<name>
$date_local
$date_gmt
$document_root
$document_uri
$fastcgi_script_name
$fastcgi_path_info

continues on next page

3.2. References and Indexes 426

https://github.com/bytecodealliance/wasm-micro-runtime
https://wasmtime.dev/

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Table 2 – continued from previous page

HTTP Modules Stream Modules

$gzip_ratio
$host
$hostname $hostname
$http2
$http3
$http_<name>
$https
$invalid_referer
$is_args
$limit_conn_status $limit_conn_status
$limit_rate
$limit_req_status
$memcached_key
$modern_browser

$mqtt_preread_clientid
$mqtt_preread_username

$msec $msec
$msie
$p8s_value
$pid $pid
$pipe
$proxy_add_x_forwarded_for
$proxy_host
$proxy_port

$protocol
$proxy_protocol_addr $proxy_protocol_addr
$proxy_protocol_port $proxy_protocol_port
$proxy_protocol_server_addr $proxy_protocol_server_addr
$proxy_protocol_server_port $proxy_protocol_server_port
$proxy_protocol_tlv_<name> $proxy_protocol_tlv_<name>
$query_string
$quic_connection

$rdp_cookie, $rdp_cookie_<name>
$realip_remote_addr $realip_remote_addr
$realip_remote_port $realip_remote_port
$realpath_root
$remote_addr $remote_addr
$remote_port $remote_port
$remote_user
$request
$request_body
$request_body_file
$request_completion
$request_filename
$request_id
$request_length
$request_method
$request_time
$request_uri
$scheme
$secure_link
$secure_link_expires
$sent_http_<name>
$sent_trailer_<name>
$server_addr $server_addr

continues on next page

3.2. References and Indexes 427

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Table 2 – continued from previous page

HTTP Modules Stream Modules

$server_name
$server_port $server_port
$server_protocol

$session_time
$slice_range
$ssl_alpn_protocol $ssl_alpn_protocol
$ssl_cipher $ssl_cipher
$ssl_ciphers $ssl_ciphers
$ssl_client_escaped_cert

$ssl_client_cert
$ssl_client_fingerprint $ssl_client_fingerprint
$ssl_client_i_dn $ssl_client_i_dn
$ssl_client_i_dn_legacy
$ssl_client_raw_cert $ssl_client_raw_cert
$ssl_client_s_dn $ssl_client_s_dn
$ssl_client_s_dn_legacy
$ssl_client_serial $ssl_client_serial
$ssl_client_v_end $ssl_client_v_end
$ssl_client_v_remain $ssl_client_v_remain
$ssl_client_v_start $ssl_client_v_start
$ssl_client_verify $ssl_client_verify
$ssl_curve $ssl_curve
$ssl_curves $ssl_curves
$ssl_early_data $ssl_early_data

$ssl_preread_alpn_protocols
$ssl_preread_protocol
$ssl_preread_server_name

$ssl_protocol $ssl_protocol
$ssl_server_name $ssl_server_name
$ssl_server_cert_type $ssl_server_cert_type
$ssl_session_id $ssl_session_id
$ssl_session_reused $ssl_session_reused
$status $status
$sticky_sessid $sticky_sessid
$sticky_sid $sticky_sid
$time_iso8601 $time_iso8601
$time_local $time_local
$tcpinfo_rtt, $tcpinfo_rttvar,
$tcpinfo_snd_cwnd, $tcpinfo_rcv_space
$uid_got
$uid_reset
$uid_set
$upstream_addr $upstream_addr
$upstream_bytes_received $upstream_bytes_received
$upstream_bytes_sent $upstream_bytes_sent
$upstream_cache_status
$upstream_connect_time $upstream_connect_time
$upstream_cookie_<name>

$upstream_first_byte_time
$upstream_header_time
$upstream_http_<name>
$upstream_probe (PRO) $upstream_probe (PRO)
$upstream_probe_body (PRO)

$upstream_probe_response (PRO)
$upstream_response_length

continues on next page

3.2. References and Indexes 428

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Table 2 – continued from previous page

HTTP Modules Stream Modules

$upstream_response_time
$upstream_session_time

$upstream_status
$upstream_sticky_status $upstream_sticky_status
$upstream_trailer_<name>
$upstream_queue_time
$uri

You can also use the short link service at https://angie.ws/ to quickly find individual directives and
variables:

3.2.3 Quick Access to Angie Directives and Variables
You can quickly access documentation for all Angie directives and variables without searching the site
via our short link service at https://angie.ws/en/. It enables shortcuts to frequently used directives,
variables and topics.

HTTP and Core Directives

Directives under core settings and HTTP modules use the /h/ prefix (short for http).

Examples:

• listen: https://angie.ws/en/h/listen

• server : https://angie.ws/en/h/server

• worker_connections: https://angie.ws/en/h/worker_connections

And so on.

ò Note

The server directive from the Upstream module is available at: https://angie.ws/en/hu/server.

Upstream Directives

Directives in the Upstream module use the /hu/ prefix (short for http upstream). Examples:

• keepalive_requests: https://angie.ws/en/hu/keepalive_requests

• keepalive_time: https://angie.ws/en/hu/keepalive_time

• keepalive_timeout : https://angie.ws/en/hu/keepalive_timeout

And so on.

Stream Module Directives

Directives in stream modules use the /s/ prefix (short for stream):

• listen: https://angie.ws/en/s/listen

• map: https://angie.ws/en/s/map

• server : https://angie.ws/en/s/server

And so on.

3.2. References and Indexes 429

https://angie.ws/
https://angie.ws/en/
https://angie.ws/en/h/listen
https://angie.ws/en/h/server
https://angie.ws/en/h/worker_connections
https://angie.ws/en/hu/server
https://angie.ws/en/hu/keepalive_requests
https://angie.ws/en/hu/keepalive_time
https://angie.ws/en/hu/keepalive_timeout
https://angie.ws/en/s/listen
https://angie.ws/en/s/map
https://angie.ws/en/s/server

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ò Note

The server directive from the Upstream module is available at: https://angie.ws/en/su/server.

Upstream Directives

Directives in the Upstream module use the /su/ prefix (short for stream upstream):

• upstream: https://angie.ws/en/su/upstream

• server : https://angie.ws/en/su/server

• state (PRO): https://angie.ws/en/su/state

And so on.

Variables

Variables use the same prefix scheme.

HTTP variables (/h/ prefix):

• $angie_version: https://angie.ws/en/h/\protect\T2A\textdollarangie_version

• $upstream_status: https://angie.ws/en/h/\protect\T2A\textdollarupstream_status

Stream variables (/s/ prefix):

• $angie_version: https://angie.ws/en/s/\protect\T2A\textdollarangie_version

• $upstream_session_time: https://angie.ws/en/s/\protect\T2A\textdollarupstream_session_
time

For placeholder variables such as $http_<HEADER> or $cookie_<NAME>, use the prefix up to the under-
score: https://angie.ws/en/h/\protect\T2A\textdollarhttp.

Additional Topics

Short links are also available for other topics:

• Certificate Chaining

• Combined Locations

• Compact Server

• Configuration

• Configuration File Reloading

• Configuration Hashes

• Control Configuration Changes

• Control Signals

• Cyclic Memory Buffer

• Debug Logging

• Dummy Server

• HTTPS Configuration

• HTTPS Optimization

• HTTPS with Separate IPs

• HTTP Sessions

• Inheritance

3.2. References and Indexes 430

https://angie.ws/en/su/server
https://angie.ws/en/su/upstream
https://angie.ws/en/su/server
https://angie.ws/en/su/state
https://angie.ws/en/h/\protect \T2A\textdollar angie_version
https://angie.ws/en/h/\protect \T2A\textdollar upstream_status
https://angie.ws/en/s/\protect \T2A\textdollar angie_version
https://angie.ws/en/s/\protect \T2A\textdollar upstream_session_time
https://angie.ws/en/s/\protect \T2A\textdollar upstream_session_time
https://angie.ws/en/h/\protect \T2A\textdollar http
https://angie.ws/en/certificate_chaining
https://angie.ws/en/combined_locations
https://angie.ws/en/compact_server
https://angie.ws/en/configure
https://angie.ws/en/configfile_reloading
https://angie.ws/en/configure_hashes
https://angie.ws/en/control_config_change
https://angie.ws/en/control_signals
https://angie.ws/en/cyclic_memory_buffer
https://angie.ws/en/debug_logging
https://angie.ws/en/dummy_server
https://angie.ws/en/https_configuration
https://angie.ws/en/https_optimization
https://angie.ws/en/https_separate_ips
https://angie.ws/en/http_sessions
https://angie.ws/en/inheritance

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

• Load Balancing

• Location Redirect

• Log Rotation

• Method Usage

• Named Locations

• Paths

• Picking a Location

• Proxy Pass URI

• Proxying

• Request Processing

• Runtime CLI Options

• Service Upgrade

• SNI (Server Name Indication)

• Source Build Features

• SSL Error Codes

• Stream Sessions

• Syntax

• Syslog Logging

• Virtual Server Selection

• WebSocket Proxying

3.3 Instructions

Step-by-step instructions for specific aspects of configuring Angie are provided here.

3.3.1 Migrating from nginx to Angie
If you're switching from nginx to Angie, congratulations! We have a guide for you.

Keep in mind that it's tailored for a basic replacement scenario that relies on a packaged version of Angie.
If you're working with containers, virtual machines, custom paths, or modules, you'll need additional
adjustments.

Installing Angie

We recommend using the official packages from our repositories; see the installation steps for Angie for
your distribution. Don't start the server yet; instead, check it with the command sudo angie -V:

$ sudo angie -V

Angie version: Angie/1.10.0
nginx version: nginx/1.27.5
built by gcc 11.4.0
configure arguments: --prefix=/etc/angie --conf-path=/etc/angie/angie.conf ...

As this shows, the configuration is located in /etc/angie/ when Angie is installed from a package.

3.3. Instructions 431

https://angie.ws/en/load_balancing
https://angie.ws/en/location_redirect
https://angie.ws/en/log_rotation
https://angie.ws/en/methods_use
https://angie.ws/en/named_location
https://angie.ws/en/paths
https://angie.ws/en/pick_location
https://angie.ws/en/proxy_pass_uri
https://angie.ws/en/proxying
https://angie.ws/en/request_processing
https://angie.ws/en/runtime_cli_options
https://angie.ws/en/service_upgrade
https://angie.ws/en/sni
https://angie.ws/en/sourcebuild_features
https://angie.ws/en/ssl_error_codes
https://angie.ws/en/stream_sessions
https://angie.ws/en/syntax
https://angie.ws/en/syslog_logging
https://angie.ws/en/virtual_server_selection
https://angie.ws/en/websocket_proxy

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Updating Angie Configuration

Angie usually requires minimal changes to existing nginx configuration.

1. Copy the entire nginx configuration to /etc/angie/:

$ sudo rsync -a --no-links /etc/nginx/ /etc/angie/

We assume nginx configuration is stored in /etc/nginx/; adjust the steps if you have a different
path.

2. Rename the main configuration file as Angie expects:

$ sudo mv /etc/angie/nginx.conf /etc/angie/angie.conf

3. Update paths throughout the Angie configuration, starting with the main configuration file. Details
depend on how nginx was installed, but at minimum you need to update the following.

Any include paths that still point to /etc/nginx/:

include /etc/nginx/conf.d/*.conf;
include /etc/nginx/default.d/*.conf;
include /etc/nginx/http.d/*.conf;
include /etc/nginx/stream.d/*.conf;
include /etc/angie/conf.d/*.conf;
include /etc/angie/default.d/*.conf;
include /etc/angie/http.d/*.conf;
include /etc/angie/stream.d/*.conf;

include /etc/nginx/sites-enabled/*;
include /etc/angie/sites-enabled/*;

include /etc/nginx/modules-enabled/*;
include /etc/angie/modules-enabled/*;

include /etc/nginx/mime.types;
include /etc/angie/mime.types;

The PID file, which is important for Angie process management:

pid /var/run/nginx.pid;
-- or --
pid /run/nginx.pid;
pid /run/angie.pid;

Finally, access log and error log :

access_log /var/log/nginx/access.log;
access_log /var/log/angie/access.log;

error_log /var/log/nginx/error.log;
error_log /var/log/angie/error.log;

Virtual Hosts

If the sites-enabled/ directory is used to include virtual hosts, update it as well:

include /etc/nginx/sites-enabled/*;
include /etc/angie/sites-enabled/*;

3.3. Instructions 432

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Then recreate the symlinks in /etc/angie/sites-enabled/ to make everything work.

List the original virtual host files, for example:

$ ls -l /etc/nginx/sites-enabled/

default -> /etc/nginx/sites-available/default

Note their actual location; here it's /etc/nginx/sites-available/.

If you didn't copy them to /etc/angie/ earlier, copy them now:

$ sudo rsync -a /etc/nginx/sites-available/ /etc/angie/sites-available/

Finally, recreate each symlink:

$ sudo ln -s /etc/angie/sites-available/default \
/etc/angie/sites-enabled/default

Dynamic Modules

Find and install Angie equivalents for all dynamic modules referenced in nginx configuration, for example:

$ sudo nginx -T | grep load_module

load_module modules/ngx_http_geoip2_module.so;
load_module modules/ngx_stream_geoip2_module.so;
...

This means you need to install the angie-module-geoip2 package, and so on.

There are two popular ways to include dynamic module configuration:

/usr/share/nginx/modules/

If dynamic modules are included via /usr/share/nginx/modules/, update the path:

Load dynamic modules. See /usr/share/doc/nginx/README.dynamic.
include /usr/share/nginx/modules/*.conf;

include /usr/share/angie/modules/*.conf;

Then copy the module configuration files:

$ sudo rsync -a /usr/share/nginx/modules/ /usr/share/angie/modules/

Finally, change the load_module path in each file:

load_module "/usr/lib64/nginx/modules/ngx_http_geoip2_module.so";
load_module "/usr/lib64/angie/modules/ngx_http_geoip2_module.so";

/etc/nginx/modules-enabled/

If dynamic modules are included via /etc/nginx/modules-enabled/, update the path:

include /etc/nginx/modules-enabled/*.conf;
include /etc/angie/modules-enabled/*.conf;

Then recreate the symlinks in /etc/angie/modules-enabled/ to make everything work.

List the original module configuration files, for example:

3.3. Instructions 433

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$ ls -l /etc/nginx/modules-enabled/

mod-http-geoip2.conf -> /usr/share/nginx/modules-available/mod-http-geoip2.conf

Note their actual location; here it's /usr/share/nginx/modules-available/.

Copy them to /usr/share/angie/:

$ sudo rsync -a /usr/share/nginx/modules-available/ /usr/share/angie/modules-
→˓available/

Finally, recreate each symlink:

$ sudo ln -s /usr/share/angie/modules-available/mod-http-geoip2.conf \
/etc/angie/modules-enabled/mod-http-geoip2.conf

Root Directory (Optional)

If root points to the /usr/share/nginx/html/ directory, you can change the directive to point to Angie.

Copy the directory and update the root value in Angie configuration:

$ sudo rsync -a /usr/share/nginx/html/ /usr/share/angie/html/

root /usr/share/nginx/html;
root /usr/share/angie/html;

User and Group (Optional)

While it's sufficient to leave the user directive as is, you can use Angie accounts for flexibility.

Update the user settings in Angie configuration:

user www-data www-data;
user angie angie;

Change the owner of all configuration files, including files in /usr/share/angie/, for example:

$ sudo chown -R angie:angie /etc/angie/
$ sudo chown -R angie:angie /usr/share/angie/

If the Angie configuration has root directives, change the owner of the directories specified there, for
example:

$ sudo chown -R angie:angie /var/www/html/

Wrapping Up

To make sure nothing is missed, find and fix remaining mentions of nginx in Angie configuration:

$ grep -rn --include='*.conf' 'nginx' /etc/angie/

Testing and Switching

After updating Angie configuration, the next step is to check its syntax to ensure Angie can work with
it, and then switch over. Verify that Angie accepts the new configuration:

3.3. Instructions 434

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$ sudo angie -t

This command parses the configuration and reports errors that would block Angie startup; fix any issues
and re-run the command.

Stopping nginx, Starting Angie

To minimize downtime, start Angie immediately after stopping nginx:

$ sudo systemctl stop nginx && sudo systemctl start angie

If needed, enable the Angie service to start after reboot:

$ sudo systemctl enable angie

Migration complete! That's it; you're awesome.

Disabling nginx

After confirming that Angie is running stably, you can disable or remove nginx to avoid conflicts.

The minimum you can do is disable the service:

$ sudo systemctl disable nginx

Configuring Angie Features

It's safe to assume you're migrating for a reason. Why not go further and configure some of the additional
features available in Angie and Angie PRO that aren't in nginx?

3.3.2 ACME Configuration
The ACME module in Angie enables automatic certificate acquisition using the ACME protocol. The
ACME protocol supports various domain verification methods (also called "validation"); this module
implements HTTP validation, DNS validation, and hook-based validation through a custom external
service.

Configuration Steps

General steps to enable certificate requests in the configuration:

• Configure an ACME client in the http block using the acme_client directive, which specifies
a unique client name and other parameters. Multiple ACME clients can be configured.

• Specify the domains for which certificates are requested: A single certificate will be issued
for all domain names listed in server_name directives within all server blocks that use acme
directives pointing to the same ACME client.

• Set up request handling and ACME callbacks: This is required to verify domain ownership.
The setup depends on the chosen domain validation method:

3.3. Instructions 435

https://datatracker.ietf.org/doc/html/rfc8555

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Method User Requirements Multi-domain Wildcard Do-
mains

HTTP Valida-
tion

Open port 80 for incoming connec-
tions on the Angie server.

–

DNS Validation Open port 53 (or the one specified in
acme_dns_port) for incoming con-
nections on the Angie server.
Set an NS record for the
_acme-challenge. subdomain
pointing to your Angie server.

– –

Hook-Based Val-
idation

Create an external service (script
or application) that can, on request
from Angie, update DNS records or
serve a special response via the web
server.

– –

• Configure SSL using the obtained certificate and key: The module makes certificates and
keys available as embedded variables that can be used in configuration to populate ssl_certificate
and ssl_certificate_key .

For SSL setup instructions, refer to SSL Configuration.

� Tip

The certificate acquisition and renewal process depends on many services and may take some time.
Be patient, and if you encounter problems or have doubts, check the debug log .

Implementation Details

Client keys and certificates are stored in PEM encoding within subdirectories of the directory specified
by the --http-acme-client-path build option:

$ ls /var/lib/angie/acme/example/

account.key certificate.pem private.key

The ACME client requires an account on the CA server. To create and manage this account, the client
uses a private key (account.key). If no key exists, it is generated at startup. The client then uses this
key to register the account with the server.

ò Note

If you already have an account key, place it in the client's subdirectory before starting to reuse the
account. Alternatively, specify the key file using the account_key parameter in acme_client .

The ACME client also uses a separate key (private.key) for Certificate Signing Requests (CSRs). This
certificate key is automatically created at startup if needed.

At startup, the client requests a certificate if one doesn't exist, signing and sending a CSR for all
domains under its management to the CA server. The server verifies domain ownership using HTTP or
DNS validation and issues a certificate, which the client saves locally (certificate.pem).

As mentioned earlier, a single certificate covers all domain names managed by the same ACME client,
potentially resulting in a multi-domain certificate. The list of all names covered by the certificate can be
found in the Subject Alternative Name (SAN) section of the obtained certificate. To check this from the
command line:

3.3. Instructions 436

https://datatracker.ietf.org/doc/html/rfc7468

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$ openssl x509 -in certificate.pem -noout -text | grep -A5 "Subject Alternative Name"

When a certificate is about to expire or the domain list changes, the client signs and sends another CSR
to the CA server. The server re-verifies ownership and issues a new certificate, which the client installs
locally, replacing the previous one.

In the configuration, the obtained certificate and its corresponding key are available through the prefix
variables $acme_cert_<name> and $acme_cert_key_<name>. Their values are the contents of the
respective files, which should be used with the ssl_certificate and ssl_certificate_key directives:

server {

listen 443 ssl;

server_name example.com www.example.com;
acme example;

ssl_certificate $acme_cert_example;
ssl_certificate_key $acme_cert_key_example;

}

HTTP Validation

Validation is handled automatically. The process involves the ACME server, upon receiving a request,
retrieving a special token file via HTTP from the address /.well-known/acme-challenge/<TOKEN>.
Our ACME module intercepts and processes such requests automatically. When the expected response
with the correct content is received, the ACME server confirms domain ownership.

Configuration Example

In this example, the ACME client named example manages certificates for example.com and www.
example.com (note that wildcard certificates aren't supported with HTTP validation):

http {

resolver 127.0.0.53; # Required for the 'acme_client' directive

acme_client example https://acme-v02.api.letsencrypt.org/directory;

server {

listen 80; # May reside in a different 'server' block
with a different domain list
or even without one

listen 443 ssl;

server_name example.com www.example.com;
acme example;

ssl_certificate $acme_cert_example;
ssl_certificate_key $acme_cert_key_example;

}
}

As noted earlier, port 80 must be open to handle HTTP ACME callbacks. However, as shown in this
example, the listen directive for this port can be placed in a separate server block. If no existing block
with this directive is present, you can create a new block limited to ACME callbacks:

3.3. Instructions 437

https://datatracker.ietf.org/doc/html/rfc8555#section-8.3

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

server {

listen 80;
return 444; # No response, connection closed

}

Why does this work? The module intercepts requests to /.well-known/acme-challenge/<TOKEN> after
reading headers but before selecting a virtual server and processing rewrite and location directives.
Such intercepted requests are processed if the <TOKEN> value matches the expected value for the specific
callback. No directory access is performed; the module handles the request entirely.

DNS Validation

Validation is handled automatically. When processing a certificate request, the ACME server performs a
special DNS query to the _acme-challenge. subdomain of the domain being verified. Once the expected
response is received, the ACME server confirms domain ownership.

Our ACME module tracks and processes such requests automatically, provided that your DNS records
are configured properly to designate the Angie server as the authoritative name server for the
_acme-challenge. subdomain.

For example, to verify the domain example.com using an Angie server at IP address 93.184.215.14,
your domain's DNS configuration should include the following records:

_acme-challenge.example.com. 60 IN NS ns.example.com.
ns.example.com. 60 IN A 93.184.215.14

This configuration delegates DNS resolution for _acme-challenge.example.com to ns.example.com,
ensuring ns.example.com is accessible via its IP address (93.184.215.14).

This method allows requesting wildcard certificates, e.g., a certificate that includes the entry *.example.
com in the Subject Alternative Name (SAN) section. To explicitly request a certificate for a subdomain,
such as www.example.com, you must separately verify that subdomain using the method described above.

. Attention

The applicability of this scenario largely depends on the capabilities of your DNS provider; some
providers do not allow such configurations.

Configuration Example

The configuration is generally similar to the example in the previous section. There is no need for
HTTP-specific settings; instead, set challenge=dns in the acme_client directive.

In this example, the ACME client named example manages certificates for example.com and *.example.
com:

http {

resolver 127.0.0.53;

acme_client example https://acme-v02.api.letsencrypt.org/directory
challenge=dns;

server {

server_name example.com *.example.com;
acme example;

3.3. Instructions 438

https://datatracker.ietf.org/doc/html/rfc8555#section-8.4

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssl_certificate $acme_cert_example;
ssl_certificate_key $acme_cert_key_example;

}
}

Hook-Based Validation

Unlike the previous methods, this validation requires additional effort. The ACME server performs
standard HTTP validation or DNS validation, but instead of interacting directly with the Angie server,
it communicates with an external service managed by the Angie server using hook calls (acme_hook).
This service configures a separate DNS or HTTP server where the ACME server sends its requests.

Once the ACME server receives the expected response from the configured DNS or HTTP server, it
confirms domain ownership.

Angie invokes the external service when certificate updates are needed via the ACME protocol. Calls
are made by proxying requests and data to FastCGI, SCGI, and similar servers using directives such as
fastcgi_pass, scgi_pass, etc.

The service must return a 2xx status code, which can be sent via the Status header. Any other code is
treated as an error, and certificate renewal is halted. Output from the service is ignored.

Configuration Example

In this example, the ACME client example is configured for domain verification using DNS callbacks,
indicated by the challenge=dns parameter in the acme_client directive.

The server block applies to all subdomains of example.com (e.g., *.example.com) and uses the ACME
client example to manage certificates, as specified by the acme directive.

A named location block is configured to handle external service calls for DNS verification. The
acme_hook directive links the server to the ACME client example. Requests are proxied to a local
FastCGI server running on port 9000 using the fastcgi_pass directive. The fastcgi_param directives
pass data about the ACME client, hook, challenge type, domain, token, and key authorization to the
external service.

acme_client example https://acme-v02.api.letsencrypt.org/directory
challenge=dns;

server {

listen 80;

server_name *.example.com;

acme example;

ssl_certificate $acme_cert_example;
ssl_certificate_key $acme_cert_key_example;

location @acme_hook_location {

acme_hook example;

fastcgi_pass localhost:9000;

fastcgi_param ACME_CLIENT $acme_hook_client;
fastcgi_param ACME_HOOK $acme_hook_name;
fastcgi_param ACME_CHALLENGE $acme_hook_challenge;
fastcgi_param ACME_DOMAIN $acme_hook_domain;

3.3. Instructions 439

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

fastcgi_param ACME_TOKEN $acme_hook_token;
fastcgi_param ACME_KEYAUTH $acme_hook_keyauth;

include fastcgi.conf;
}

}

The following Perl script demonstrates a corresponding external FastCGI service:

#!/usr/bin/perl

use strict; use warnings;

use FCGI;

my $socket = FCGI::OpenSocket(":9000", 5);
my $request = FCGI::Request(*STDIN, *STDOUT, *STDERR, \%ENV, $socket);

while ($request->Accept() >= 0) {
print "\r\n";

my $client = $ENV{ACME_CLIENT};
my $hook = $ENV{ACME_HOOK};
my $challenge = $ENV{ACME_CHALLENGE};
my $domain = $ENV{ACME_DOMAIN};
my $token = $ENV{ACME_TOKEN};
my $keyauth = $ENV{ACME_KEYAUTH};

if ($hook eq 'add') {

DNS_set_TXT_record("_acme-challenge.$domain.", $keyauth);

} elsif ($hook eq 'remove') {

DNS_clear_TXT_record("_acme-challenge.$domain.");
}

};

FCGI::CloseSocket($socket);

Here, DNS_set_TXT_record() and DNS_clear_TXT_record() are functions assumed to add and remove
TXT records in the configuration of an external DNS server that the ACME server queries. These records
must contain the data provided by the Angie server to allow the external DNS server to successfully pass
validation, similar to the process described in DNS Validation. The implementation details of such
functions are beyond the scope of this guide; for example, parameters can also be passed through the
request URI:

...

location @acme_hook_location {

acme_hook example uri=/acme_hook/$acme_hook_name?domain=$acme_hook_domain&key=
→˓$acme_hook_keyauth;

fastcgi_pass localhost:9000;

fastcgi_param REQUEST_URI $request_uri;
fastcgi_param ACME_CLIENT $acme_hook_client;

3.3. Instructions 440

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

fastcgi_param ACME_CHALLENGE $acme_hook_challenge;
fastcgi_param ACME_TOKEN $acme_hook_token;

include fastcgi.conf;
}

Another example using PHP-FPM:

location @acme_hook_location {

acme_hook example;
root /var/www/dns;
fastcgi_pass unix:/run/php-fpm/php-dns.sock;
fastcgi_index hook.php;
fastcgi_param SCRIPT_FILENAME /var/www/dns/hook.php;
include fastcgi_params;

fastcgi_param ACME_CLIENT $acme_hook_client;
fastcgi_param ACME_HOOK $acme_hook_name;
fastcgi_param ACME_CHALLENGE $acme_hook_challenge;
fastcgi_param ACME_DOMAIN $acme_hook_domain;
fastcgi_param ACME_TOKEN $acme_hook_token;
fastcgi_param ACME_KEYAUTH $acme_hook_keyauth;

}

[dns]
listen = /run/php-fpm/php-dns.sock
listen.mode = 0666
user = angie
group = angie
chdir = /var/www/dns
...

Parameters passed can be accessed in PHP via $_SERVER['...'].

ACME in Stream Module

The stream module ACME enables automated certificate issuance and usage for TCP traffic. For proper
operation, the HTTP equivalent must be configured first: the ACME client must be declared in the http
context, and the stream block must be placed after the http block in the configuration.

Configuration Example

By default, HTTP validation is used to obtain certificates. As mentioned in HTTP Validation, this
requires an HTTP server listening on port 80:

HTTP section
http {

resolver 127.0.0.53;

ACME client for stream section
acme_client example https://acme-v02.api.letsencrypt.org/directory;

Server for HTTP validation
server {

listen 80;

3.3. Instructions 441

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

return 444;
}

}

Stream section
stream {

server {

listen 12345 ssl;
proxy_pass backend_upstream;

ssl_certificate $acme_cert_example;
ssl_certificate_key $acme_cert_key_example;

server_name example.com www.example.com;
acme example; # reference to ACME client defined in HTTP section

}

upstream backend_upstream {

server 127.0.0.1:54321;
}

}

DNS validation can also be used by configuring challenge=dns in the acme_client directive; in this
case, the server is not needed.

Migrating from certbot

If you previously used certbot to obtain and renew SSL certificates from Let's Encrypt before migrating
from nginx to Angie, follow these steps to transition to using the ACME module.

Suppose you initially configured certificates with the following command:

$ sudo certbot --nginx -d example.com -d www.example.com

The configuration automatically created by certbot is typically located in /etc/nginx/
sites-available/example.conf and looks something like this:

server {

listen 80;
server_name example.com www.example.com;
return 301 https://$host$request_uri;

}

server {

listen 443 ssl;
server_name example.com www.example.com;

root /var/www/example;
index index.html;

ssl_certificate /etc/letsencrypt/live/example.com/fullchain.pem;
ssl_certificate_key /etc/letsencrypt/live/example.com/privkey.pem;
include /etc/letsencrypt/options-ssl-nginx.conf;
ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem;

3.3. Instructions 442

https://certbot.eff.org/

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

location / {

try_files $uri $uri/ =404;
}

}

In the example above, the highlighted lines must be modified. Depending on your circumstances and
preferences, configure HTTP validation or DNS validation using the ACME module.

The resulting Angie configuration might look like this:

http {

resolver 127.0.0.53;

acme_client example https://acme-v02.api.letsencrypt.org/directory;

server {

listen 80;
server_name example.com www.example.com;
return 301 https://$host$request_uri;

}

server {
listen 443 ssl;
server_name example.com www.example.com;

root /var/www/example;
index index.html;

acme example;

ssl_certificate $acme_cert_example;
ssl_certificate_key $acme_cert_key_example;

location / {
try_files $uri $uri/ =404;

}
}

}

Remember to reload the configuration after making changes:

$ sudo kill -HUP $(cat /run/angie.pid)

Once the new configuration is verified, you can delete the certbot certificates and optionally disable or
remove certbot entirely, if it is no longer used elsewhere:

$ sudo rm -rf /etc/letsencrypt

$ sudo systemctl stop certbot.timer
$ sudo systemctl disable certbot.timer
$ # -- or --
$ sudo rm /etc/cron.d/certbot

$ sudo apt remove certbot

3.3. Instructions 443

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

$ # -- or --
$ sudo dnf remove certbot

3.3.3 SSL Configuration
To configure an HTTPS server, the ssl parameter must be enabled on listening sockets in the server
block, and the locations of the server certificate and private key files should be specified:

server {
listen 443 ssl;
server_name www.example.com;
ssl_certificate www.example.com.crt;
ssl_certificate_key www.example.com.key;
ssl_protocols TLSv1.2 TLSv1.3;
ssl_ciphers HIGH:!aNULL:!MD5;

#...
}

The server certificate is a public entity. It is sent to every client that connects to the server. The private
key is a secure entity and should be stored in a file with restricted access; however, it must be readable
by Angie's master process. The private key may alternately be stored in the same file as the certificate.

ssl_certificate www.example.com.cert;
ssl_certificate_key www.example.com.cert;

In which case the file access rights should also be restricted. Although the certificate and the key are
stored in one file, only the certificate is sent to a client.

The directives ssl_protocols and ssl_ciphers can be used to limit connections to include only the strong
versions and ciphers of SSL/TLS. By default, Angie uses:

ssl_protocols TLSv1.2 TLSv1.3;
ssl_ciphers HIGH:!aNULL:!MD5;

So configuring them explicitly is generally not needed.

HTTPS Server Optimization

SSL operations consume extra CPU resources. On multi-processor systems, several worker processes
should be run, no less than the number of available CPU cores. The most CPU-intensive operation is
the SSL handshake. There are two ways to minimize the number of these operations per client: the first is
by enabling keepalive connections to send several requests via one connection, and the second is to reuse
SSL session parameters to avoid SSL handshakes for parallel and subsequent connections. The sessions
are stored in an SSL session cache shared between workers and configured by the ssl_session_cache
directive. One megabyte of the cache contains about 4000 sessions. The default cache timeout is 5
minutes. It can be increased by using the ssl_session_timeout directive. Here is a sample configuration
optimized for a multi-core system with a 10-megabyte shared session cache:

worker_processes auto;

http {
ssl_session_cache shared:SSL:10m;
ssl_session_timeout 10m;

server {
listen 443 ssl;
server_name www.example.com;
keepalive_timeout 70;

3.3. Instructions 444

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssl_certificate www.example.com.crt;
ssl_certificate_key www.example.com.key;
ssl_protocols TLSv1.2 TLSv1.3;
ssl_ciphers HIGH:!aNULL:!MD5;

#...

SSL Certificate Chains

Some browsers may complain about a certificate signed by a well-known certificate authority, while other
browsers may accept the certificate without issues. This occurs because the issuing authority has signed
the server certificate using an intermediate certificate that is not present in the certificate base of well-
known trusted certificate authorities distributed with a particular browser. In this case, the authority
provides a bundle of chained certificates which should be concatenated to the signed server certificate.
The server certificate must appear before the chained certificates in the combined file:

$ cat www.example.com.crt bundle.crt > www.example.com.chained.crt

The resulting file should be used with the ssl_certificate directive:

server {
listen 443 ssl;
server_name www.example.com;
ssl_certificate www.example.com.chained.crt;
ssl_certificate_key www.example.com.key;

#...
}

If the server certificate and the bundle were concatenated in the wrong order, Angie fails to start and
displays an error message:

SSL_CTX_use_PrivateKey_file(" ... /www.example.com.key") failed
(SSL: error:0B080074:x509 certificate routines: X509_check_private_key:key values
mismatch)

Because Angie tried to use the private key with the bundle's first certificate instead of the server certifi-
cate.

Browsers usually store intermediate certificates that they receive, signed by trusted authorities, so
browsers that are actually used may already have the required intermediate certificates and may not
complain about a certificate being sent without a chained bundle. To ensure the server sends the com-
plete certificate chain, the openssl command-line utility may be used, for example:

$ openssl s_client -connect www.godaddy.com:443

Certificate chain
0 s:/C=US/ST=Arizona/L=Scottsdale/1.3.6.1.4.1.311.60.2.1.3=US

/1.3.6.1.4.1.311.60.2.1.2=AZ/O=GoDaddy.com, Inc
/OU=MIS Department/CN=www.GoDaddy.com
/serialNumber=0796928-7/2.5.4.15=V1.0, Clause 5.(b)

i:/C=US/ST=Arizona/L=Scottsdale/O=GoDaddy.com, Inc.
/OU=http://certificates.godaddy.com/repository
/CN=Go Daddy Secure Certification Authority
/serialNumber=07969287

1 s:/C=US/ST=Arizona/L=Scottsdale/O=GoDaddy.com, Inc.
/OU=http://certificates.godaddy.com/repository
/CN=Go Daddy Secure Certification Authority
/serialNumber=07969287

i:/C=US/O=The Go Daddy Group, Inc.
/OU=Go Daddy Class 2 Certification Authority

3.3. Instructions 445

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

2 s:/C=US/O=The Go Daddy Group, Inc.
/OU=Go Daddy Class 2 Certification Authority

i:/L=ValiCert Validation Network/O=ValiCert, Inc.
/OU=ValiCert Class 2 Policy Validation Authority
/CN=http://www.valicert.com//emailAddress=info@valicert.com

� Tip

When testing configurations with SNI , it is important to specify the -servername option, as openssl
does not use SNI by default.

In this example, the subject ("s") of the www.GoDaddy.com server certificate #0 is signed by an issuer
("i") which itself is the subject of the certificate #1, which is signed by an issuer which itself is the
subject of the certificate #2, which is signed by the well-known issuer ValiCert, Inc. whose certificate is
stored in the browsers' built-in certificate base.

If a certificate bundle has not been added, only the server certificate #0 will be shown.

A Single HTTP/HTTPS Server

It is possible to configure a single server that handles both HTTP and HTTPS requests:

server {
listen 80;
listen 443 ssl;
server_name www.example.com;
ssl_certificate www.example.com.crt;
ssl_certificate_key www.example.com.key;

#...
}

Name-Based HTTPS Servers

A common issue arises when configuring two or more HTTPS servers listening on a single IP address:

server {
listen 443 ssl;
server_name www.example.com;
ssl_certificate www.example.com.crt;

#...
}

server {
listen 443 ssl;
server_name www.example.org;
ssl_certificate www.example.org.crt;

#...
}

With this configuration, a browser receives the default server's certificate, i.e. www.example.com, re-
gardless of the requested server name. This is caused by SSL protocol behavior. The SSL connection
is established before the browser sends an HTTP request, and Angie does not know the name of the
requested server. Therefore, it may only offer the default server's certificate.

The oldest and most robust method to resolve the issue is to assign a separate IP address for every
HTTPS server:

3.3. Instructions 446

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

server {
listen 192.168.1.1:443 ssl;
server_name www.example.com;
ssl_certificate www.example.com.crt;

#...
}

server {
listen 192.168.1.2:443 ssl;
server_name www.example.org;
ssl_certificate www.example.org.crt;

#...
}

An SSL Certificate with Multiple Names

There are other ways that allow sharing a single IP address between several HTTPS servers. However, all
of them have their drawbacks. One way is to use a certificate with several names in the SubjectAltName
certificate field, for example, www.example.com and www.example.org. However, the SubjectAltName
field length is limited.

Another way is to use a certificate with a wildcard name, for example, *.example.org. A wildcard
certificate secures all subdomains of the specified domain, but only on one level. This certificate matches
www.example.org but does not match example.org and www.sub.example.org. These two methods
can also be combined. A certificate may contain exact and wildcard names in the SubjectAltName field,
for example, example.org and *.example.org.

It is better to place a certificate file with several names and its private key file at the http level of
configuration to inherit their single memory copy in all servers:

ssl_certificate common.crt;
ssl_certificate_key common.key;

server {
listen 443 ssl;
server_name www.example.com;

#...
}

server {
listen 443 ssl;
server_name www.example.org;

#...
}

Server Name Indication

A more generic solution for running several HTTPS servers on a single IP address is TLS Server Name
Indication extension (SNI, RFC 6066), which allows a browser to pass a requested server name during
the SSL handshake, and therefore, the server will know which certificate it should use for the connection.
SNI is currently supported by most modern browsers, though may not be used by some old or special
clients.

� Tip

Only domain names can be passed in SNI; however, some browsers may erroneously pass an IP
address of the server as its name if a request includes a literal IP address. One should not rely on
this.

3.3. Instructions 447

https://datatracker.ietf.org/doc/html/rfc6066.html

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

If Angie was built with SNI support, then Angie will show this when run with the -V switch:

$ angie -V
...
TLS SNI support enabled
...

However, if the SNI-enabled Angie is linked dynamically to an OpenSSL library without SNI support,
Angie displays a warning:

Angie was built with SNI support, however, now it is linked dynamically to an OpenSSL
library which has no tlsext support, therefore SNI is not available

3.3.4 Console Light Web Monitoring Panel
Angie provides a wide range of possibilities to monitor its work; in addition to the metrics API and the
Prometheus module, you can use a visual console that installs beside the server.

Console Light

Console Light is a lightweight, real-time activity monitoring interface that displays key server load and
performance metrics. The console is based on the API capabilities of Angie; activity monitoring data is
generated in real time. In addition, the console allows you to dynamically modify Angie configuration
where the API itself provides this capability.

Example of a deployed and configured console: https://console.angie.software/

3.3. Instructions 448

https://console.angie.software/

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Version History

Version Release Date Changes

1.8.0 03.07.2025 Display of response time metrics for proxied HTTP and
TCP/UDP servers

1.7.2 07.04.2025 Added "busy" option in filter controller on the
"HTTP/TCP/UDP Upstreams" pages.

1.7.1 04.04.2025 Fixed incorrect values in the "HTTP/Location Zones" tables
on the "HTTP Zones" page.

1.7.0 02.04.2025
• Display exact data volumes in bytes on mouse hover
• New busy status for upstream peers in the statistics

API, indicating that a peer has reached the limit con-
figured by the max_conns parameter

• Fixed documentation links

1.6.1 27.01.2025
• Fixed typos
• Fixed a development-time project build issue

1.6.0 23.01.2025
• Internationalization support with available locales: en,
ru.

• Sticky header feature added to the table component.
• Support for data measurement units in pebibytes

(PiB).
• Fixed incorrect value counter in the HTTP Upstreams

widget on the main page.
• Default values are now correctly used on the HTTP

Upstreams page in the response context.

1.5.0 Not publicly released.
1.4.0 08.08.2024 Added monitoring status display in the website favicon.
1.3.0 28.04.2024 Added the ability to set a server to the draining state in

the upstream context.
1.2.1 26.12.2023 Added active health checks in the Stream context.
1.2.0 25.12.2023 Added server editing in the Stream context.

Installation and Configuration

Console Light is published as angie-console-light (Angie) and angie-pro-console-light (Angie
PRO) packages in our repositories and can be installed like any other package; alternatively, you can
download the source code from our website or GitHub.

After installation, configure the console by adding the following location inside a server block in the
server configuration (note the comments):

location /console/ {

Local access only
allow 127.0.0.1;
deny all;

auto_redirect on;

alias /usr/share/angie-console-light/html/;
FreeBSD only:
alias /usr/local/www/angie-console-light/html/;
index index.html;

3.3. Instructions 449

https://download.angie.software/files/angie-console-light/
https://github.com/webserver-llc/angie-console-light

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

location /console/api/ {
api /status/;

}

For editing features to work after authentication (PRO only)
location /console/api/config/ {

auth_basic "Protected site";
auth_basic_user_file conf/htpasswd;

api /config/;
}

}

Don't forget to apply the modified configuration:

$ sudo angie -t && sudo service angie reload

After this, the console will be available on the server specified by the server block, at the path specified
for the location; in the example above, the path is set as /console/.

Authentication can be enabled for any API section similar to the example above, for instance:

location /console/server_zones/ {
auth_basic "Protected site";
auth_basic_user_file conf/htpasswd;

}

You can also restrict access to any section of the configured console location, for example:

location /console/api/resolvers/ {
deny all;

}

Interface

The console is a single screen with a set of tabs, each containing several widgets with monitoring data.

� Hint

In the sections below, interface elements are described from left to right.

Angie Tab

3.3. Instructions 450

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

This is the main tab where the key Angie monitoring indicators are displayed in summary form, based
on data from several API sections.

About Widget

Displays the Angie version number with a link to the corresponding documentation, as well as the server
address and the time of the last configuration reload .

Additionally, if the api_config_files directive is enabled, the Configs link opens a list of configuration
files loaded on the server. Each file can then be viewed in a compact format with syntax highlighting.

Connections Widget

Displays basic server connection statistics, generated from the /status/connections/ API section:

Current Current number of connections
Accepted/s Number of connections accepted per second
Active Number of active connections
Idle Number of idle connections
Dropped Number of dropped connections

Also available:

Accepted Total number of connections accepted since the last server reload

HTTP Zones Widget

. Attention

Requires setting the status_zone directive in a server or location context.

Displays shared memory zone statistics for the http context, generated from the /sta-
tus/http/server_zones/ API section:

Total Total number of zones
Problems Number of zones with any issues
Traffic Total incoming and outgoing traffic volume

HTTP Upstreams Widget

. Attention

Requires setting the zone directive in an upstream block in the http context.

Displays upstream statistics for the http context, generated from the /status/http/upstreams/ API
section:

Total Total number of upstreams
Problems Number of upstreams with any issues
Servers Server statistics broken down by state

3.3. Instructions 451

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

TCP/UDP Zones Widget

. Attention

Requires setting the following directives:

• status_zone in a server or stream context;

• limit_conn in a server or stream context;

• limit_conn_zone in the stream context.

Example:

stream {

...
limit_conn_zone $connection zone=limit-conn-stream:10m;

server {

...
limit_conn limit-conn-stream 1;
status_zone foo;

}
}

Displays shared memory zone statistics for the stream context, generated from the /sta-
tus/stream/server_zones/ API section:

Conn total Total number of client connections
Conn current Current number of client connections
Conn/s Number of connections processed per second

TCP/UDP Upstreams Widget

. Attention

Requires setting the zone directive in an upstream block in the stream context.

Displays upstream statistics for the stream context, generated from the /status/stream/upstreams/ API
section:

Total Total number of upstreams
Problems Number of upstreams with any issues
Servers Server statistics broken down by state

HTTP Zones Tab

. Attention

Requires setting the status_zone directive in a server or location context.

3.3. Instructions 452

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Server Zones Section

Summarizes shared memory zone monitoring statistics for the server context in http, generated from
the /status/http/server_zones/ API section. The following data is presented for each zone:

Zone Zone name

� Hint

Click the arrow next to Zone to sort zones alphabetically or by config-
uration order.

Requests Total number of requests and the number of requests per second
Responses Number of responses broken down by status codes, as well as their total

number
Traffic Outgoing and incoming traffic rates, as well as total volumes of outgoing

and incoming traffic
SSL Aggregate counts of: successful SSL handshakes; SSL session reuses; SSL

handshakes with expired timeout; unsuccessful SSL handshakes

Location Zones Section

Summarizes shared memory zone monitoring statistics for the location context in http, generated from
the /status/http/location_zones/ API section. The following data is presented for each zone:

3.3. Instructions 453

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Zone Zone name

� Hint

Click the arrow next to Zone to sort zones alphabetically or by config-
uration order.

Requests Total number of requests and the number of requests per second
Responses Number of responses broken down by status codes, as well as their total

number
Traffic Outgoing and incoming traffic rates, as well as total volumes of outgoing

and incoming traffic

Connection Limit Zones (Limit Conn) Section

Displays statistics of limit_conn zones in the http context, generated from the /sta-
tus/http/limit_conns/ API section. The following data is presented for each zone:

Zone Zone name

� Hint

Click the icon next to Zone to open or close the chart with the following
indicators.

Passed Total number of proxied connections
Rejected Total number of rejected connections
Exhausted Total number of connections dropped due to zone storage overflow
Skipped Total number of connections passed with a zero or greater than 255 bytes

key

Request Limit Zones (Limit Req) Section

Displays statistics of limit_reqs zones in the http context, generated from the /status/http/limit_reqs/
API section. The following data is presented for each zone:

3.3. Instructions 454

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Zone Zone name

� Hint

Click the icon next to Zone to open or close the chart with the following
indicators.

Passed Total number of proxied connections
Delayed Total number of delayed connections
Rejected Total number of rejected connections
Exhausted Total number of connections dropped due to zone storage overflow
Skipped Total number of connections passed with a zero or greater than 255 bytes

key

HTTP Upstreams Tab

. Attention

Requires setting the zone directive in an upstream block in the http context.

This tab summarizes upstream monitoring statistics for the http context, generated from the /sta-
tus/http/upstreams/ API section.

• The Show upstreams list button toggles a brief list of upstreams with the number of problematic
upstreams and peers.

• The Failed only switch toggles the display mode for problematic upstreams statistics.

• The edit button toggles the upstream editing interface.

• The dropdown list on the right side of each upstream table allows you to filter servers in a specific
state (Up, Failed, Checking, Down).

For each upstream, in addition to its name and shared memory zone utilization ratio, the following data
is presented:

3.3. Instructions 455

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Server Names, downtimes, and weights of upstream servers

� Hint

Click the arrow next to Server to sort servers by their state or configu-
ration order.

Requests Total number and processing rate of requests
Responses Number of responses broken down by status codes
Connections Number of active connections and their maximum limit, if set
Traffic Outgoing and incoming traffic rates, as well as total volumes of outgoing

and incoming traffic
Server checks Number of unsuccessful attempts to contact the server and the number of

times the server was considered unavailable (the health object in the API)
Health monitors Total number of server checks, number of unsuccessful checks, and the time

of the last check

Editing upstreams

In Angie PRO, there is an edit button next to each upstream; when clicked, it displays two more buttons:

3.3. Instructions 456

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Edit selected Edit selected servers within an upstream. Allows you to set the following
parameters for all at once: Weight, maximum connection limit (Max_conns),
maximum failure limit that marks a server as unavailable (Max_fails), time
window for counting failures for the maximum failure limit (Fail_timeout),
state (active – enabled, down – disabled, or draining – only receives re-
quests from sessions previously bound through sticky).
You can also delete the selected servers here.

Add server Add a server to the upstream. Allows you to set the following parame-
ters: address, backup server or not, Weight, maximum connection limit
(Max_conns), maximum failure limit that marks a server as unavailable
(Max_fails), failure counting time window (Fail_timeout), state (active
– enabled, down – disabled, or draining – only receives requests from ses-
sions previously bound through sticky).

TCP/UDP Zones Tab

. Attention

Requires setting the following directives:

• status_zone in a server or stream context;

• limit_conn in a server or stream context;

• limit_conn_zone in the stream context.

Example:
stream {

3.3. Instructions 457

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

...
limit_conn_zone $connection zone=limit-conn-stream:10m;

server {

...
limit_conn limit-conn-stream 1;
status_zone foo;

}
}

TCP/UDP Zones Section

Summarizes shared memory zone monitoring statistics for the server context in stream, generated from
the /status/stream/server_zones/ API section. The following data is presented for each zone:

Zone Zone name
Connections Current and total number of connections, as well as the number of connec-

tions per second
Sessions Number of sessions broken down by status codes, as well as their total

number
Traffic Outgoing and incoming traffic rates, as well as total volumes of outgoing

and incoming traffic
SSL Aggregate counts of: successful SSL handshakes; unsuccessful SSL hand-

shakes; SSL session reuses

Connection Limit Zones (Limit Conn) Section

Displays statistics of limit_conn zones in the stream context, generated from the /sta-
tus/stream/limit_conns/ API section. The following data is presented for each zone:

3.3. Instructions 458

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Zone Zone name

� Hint

Click the icon next to Zone to open or close the chart with the following
indicators.

Passed Total number of proxied connections
Rejected Total number of rejected connections
Exhausted Total number of connections dropped due to zone storage overflow
Skipped Total number of connections passed with a zero or greater than 255 bytes

key

TCP/UDP Upstreams Tab

. Attention

Requires setting the zone directive in an upstream block in the stream context.

This tab summarizes upstream monitoring statistics for the stream context, generated from the /sta-
tus/stream/upstreams/ API section.

• The Show upstreams list button toggles the display of a brief list of upstreams with the number
of problematic upstreams and peers.

• The Failed only switch enables and disables the display mode for problematic upstreams statis-
tics.

• The edit button opens the upstream editing widget.

• The dropdown list on the right side of each upstream table allows you to filter servers in a specific
state (Up, Failed, Checking, Down).

For each upstream, the following data is presented:

Server Names, downtimes, and weights of upstream servers

� Hint

Click the arrow next to Server to sort servers by their state or configu-
ration order.

Connections Number of active connections and their maximum limit, if set
Traffic Outgoing and incoming traffic rates, as well as total volumes of outgoing

and incoming traffic
Server checks Number of unsuccessful attempts to contact the server and the number of

times the server was considered unavailable (the health object in the API)

3.3. Instructions 459

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Editing upstreams

In Angie PRO, there is an edit button next to each upstream; when clicked, it displays two more buttons:

Edit selected Edit selected servers within an upstream. Allows you to set the following
parameters for all at once: Weight, maximum connection limit (Max_conns),
maximum failure limit that marks a server as unavailable (Max_fails), time
window for counting failures for the maximum failure limit (Fail_timeout),
state (active - enabled, down - disabled, or draining - only receives requests
from sessions previously bound through sticky).
You can also delete the selected servers here.

Add server Add a server to the upstream. Allows you to set the following parame-
ters: address, backup server or not, Weight, maximum connection limit
(Max_conns), maximum failure limit that marks a server as unavailable
(Max_fails), failure counting time window (Fail_timeout), state (active
- enabled, down - disabled, or draining - only receives requests from ses-
sions previously bound through sticky).

Caches Tab

3.3. Instructions 460

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

. Attention

Requires setting the proxy_cache_path directive in the http context.

This tab summarizes monitoring statistics for proxy_cache zones in the http context, generated from
the /status/http/caches/ API section. The following data is presented for each zone:

Zone Zone name

� Hint

Click the icon next to Zone to open or close the lists of shards for all
zones that have them.

State Cache state: cold (metadata being loaded into memory) or hot (metadata
loaded)

Memory usage Memory utilization ratio
Max size Maximum memory size
Used Used memory size
Disk usage Disk utilization ratio
Traffic Traffic served from cache, written to cache, and returned bypassing the

cache
Hit ratio Cache hit ratio (ratio of traffic served from cache to total volume)

If sharding is enabled for a zone, it is shown as a dropdown list that lists individual shards:

Path Shard path on disk
State Shard state: cold (metadata being loaded into memory) or hot (metadata

loaded)
Max size Maximum memory size
Used Used memory size
Disk usage Disk utilization ratio

Shared Zones Tab

This tab summarizes monitoring statistics for all shared memory zones across all contexts. The following
data is presented for each zone:

3.3. Instructions 461

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

Zone Zone name

� Hint

Click the arrow next to Zone to sort zones by size or configuration order.

Total memory pages Total number of memory pages
Used memory pages Number of memory pages used
Memory usage Memory utilization ratio for the zone

DNS Resolvers Tab

. Attention

Requires setting the resolver directive in the http context.

This tab summarizes query statistics in DNS shared memory zones, generated from the /status/resolvers/
API section. The following data is presented for each zone:

Zone Zone name

� Hint

Click the arrow next to Zone to sort zones by state or configuration
order.

Requests Number of A and AAAA, SRV, PTR type requests
Responses Number of responses broken down by corresponding codes (Success, Format

error, Server failure, Name error, Not implemented, Refused and oth-
ers)

Settings Widget

Allows you to configure general console parameters:

• Data refresh rate. Default value — 1 sec.

3.3. Instructions 462

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

• Threshold ratio for 4xx statuses. When the threshold is reached, "yellow" warnings appear in the
corresponding sections related to server responses. Default value — 7%.

• Time window for calculating the cache hit ratio. Default value — 300 sec.

• Error threshold for the resolver. When the threshold is reached, the resolver will turn "red".
Default value — 3%.

• Console interface language. Available options: English and Russian. By default, the console
language is selected based on the locale set in the browser.

Console Control Panel

On all tabs, in the middle of the left side of the page, there is a slide-out panel with two buttons .

The top button pauses and resumes data updates from the API, while the bottom button allows you to
update the data manually when updates are paused.

3.3.5 Configuring the Prometheus dashboard
To configure the Prometheus dashboard for Angie in Grafana, follow these steps:

1. Using the Prometheus module, add the following include directive in the http block of the config-
uration file:

http {
include prometheus_all.conf;

...
}

Also add the corresponding prometheus directive inside a location within a separate server block
with a dedicated IP address and port for this purpose, for example:

server {

listen 192.168.1.100:80;

location =/p8s {
prometheus all;

}

...

}

These enable the export of Angie metrics in Prometheus format at the endpoint specified in the
location.

2. Add the following configuration to Prometheus, specifying the IP address and port set earlier in
the server:

scrape_configs:
- job_name: "angie"

scrape_interval: 15s
metrics_path: "/p8s"
static_configs:

- targets: ["192.168.1.100:80"]

This will collect metrics every 15 seconds, using the /p8s path configured in the previous step.

3.3. Instructions 463

https://grafana.com/grafana/dashboards/20719-angie-dashboard/

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ò Note

Make sure the global scrape_interval value does not exceed the value specified here.

3. Import the Prometheus dashboard for Angie into Grafana.

3.3. Instructions 464

https://grafana.com/grafana/dashboards/20719-angie-dashboard/

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

CHAPTER 4

Troubleshooting

If you encounter a technical issue and can't find a solution in other sections, ask a question on the
community forum or in the Telegram channel.

Technical support for clients:

• https://support.angie.software

• support@angie.software

4.1 Debug Logging

The debug log should be enabled before performing self-diagnostics or as recommended by technical
support.

To do this, run Angie using the executable with debug support:

Linux

In the pre-built packages for Linux, the angie-debug file is built with debug logging enabled:

$ ls -l /usr/sbin/ | grep angie

lrwxrwxrwx 1 root root 13 Sep 21 18:58 angie -> angie-nodebug
-rwxr-xr-x 1 root root 1561224 Sep 21 18:58 angie-debug
-rwxr-xr-x 1 root root 1426056 Sep 21 18:58 angie-nodebug

Configure running angie-debug:

$ sudo ln -fs angie-debug /usr/sbin/angie
$ sudo angie -t && sudo service angie upgrade

This will initiate a live executable upgrade.

To revert to the regular executable after debugging:

$ sudo ln -fs angie-nodebug /usr/sbin/angie
$ sudo angie -t && sudo service angie upgrade

FreeBSD

465

https://forum.angie.support/
https://t.me/angie_support
https://support.angie.software
mailto:support@angie.software

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

In the pre-built packages for FreeBSD, the angie-debug file is built with debug logging enabled:

$ ls -l /usr/local/sbin/ | grep angie

lrwxrwxrwx 1 root root 13 Sep 21 18:58 angie -> angie-nodebug
-rwxr-xr-x 1 root root 1561224 Sep 21 18:58 angie-debug
-rwxr-xr-x 1 root root 1426056 Sep 21 18:58 angie-nodebug

Configure running angie-debug:

$ sudo ln -fs angie-debug /usr/local/sbin/angie
$ sudo angie -t && sudo service angie upgrade

This will initiate a live executable upgrade.

To revert to the regular executable after debugging:

$ sudo ln -fs angie-nodebug /usr/local/sbin/angie
$ sudo angie -t && sudo service angie upgrade

Building from Source

When building Angie from source, enable debugging before compilation:

$./configure --with-debug ...

After installation, angie -V allows verifying that debug logging is enabled:

$ angie -V

...
configure arguments: --with-debug ...

ò Note

Using the executable with debug support may slightly reduce performance; enabling the debug log
can significantly reduce it and increase disk space usage.

To enable the debug log, set the debug level in the configuration using the error_log directive:

error_log /path/to/log debug;

And reload the configuration:

$ sudo angie -t && sudo service angie reload

ò Note

If you switch to the executable without debug support but leave the debug level in the error_log
directive, Angie will log entries at the info level.

Overriding error_log in the configuration without specifying the debug level disables the debug log.
Here, overriding the log at the server level disables debug logging for an individual server:

error_log /path/to/log debug;

http {
server {

4.1. Debug Logging 466

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

error_log /path/to/log;
...

To avoid this, remove the line that overrides error_log , or set the debug level in it:

error_log /path/to/log debug;

http {
server {

error_log /path/to/log debug;
...

4.1.1 Directive Location
The location of the error_log directive affects the completeness of debug information collected.

A directive specified at a lower configuration level (for example, inside a server or location block)
overrides logging settings specified at a higher level (for example, at the main configuration level or
inside an http block).

Debug log disabled for a specific server

If debug logging is enabled globally but error_log is specified for an individual server without the debug
level, debug information will not be collected for that server.

error_log /var/log/angie/error.log debug; # Global debug log

http {

server {

listen 80;
server_name example.com;

error_log /var/log/angie/example.com.error.log;
Debug log for example.com is disabled, file contains info level

...
}

server {

listen 80;
server_name another.com;

This server will use the global debug log
...

}
}

Preserving debug log at server level

To preserve debug information collection for a specific server but direct it to a different file, you must
also specify the debug level:

error_log /var/log/angie/error.log debug; # Global debug log

http {

4.1. Debug Logging 467

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

server {

listen 80;
server_name example.com;

error_log /var/log/angie/example.com.error.log debug;
Debug log for example.com is enabled but written to a separate file

...
}

}

Therefore, to enable debug logging globally but override the log file for individual blocks, also specify
the debug level in those overrides. Otherwise, if no logging level is specified in the error_log directive,
the error level will be used by default and debug information for those blocks will be lost.

4.1.2 Logging Specific Addresses
You can enable debug logging only for specified client addresses:

error_log /path/to/log;

events {
debug_connection 192.168.1.1;
debug_connection 192.168.10.0/24;

}

4.1.3 Cyclic Memory Buffer
Debug log can be written to a cyclic memory buffer:

error_log memory:32m debug;

Writing to the memory buffer at the debug level will not significantly impact performance even under
high load. In this case, the log can be extracted using a GDB script, for example:

set $log = ngx_cycle->log

while $log->writer != ngx_log_memory_writer
set $log = $log->next

end

set $buf = (ngx_log_memory_buf_t *) $log->wdata
dump binary memory debug_log.txt $buf->start $buf->end

4.2 Core Dumps

Core dumps help investigate crashes. Include them when contacting support . For builds from our
repositories, we provide debug symbols in special packages. They have the same names as the original
packages with the -dbg suffix added, for example angie-dbg.

ò Note

This section assumes you are running Angie as the root user (recommended).

4.2. Core Dumps 468

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

4.2.1 Linux: systemd
To enable core dump saving when running Angie as a systemd service (for example, when installed from
packages), modify the service settings in the /lib/systemd/system/angie.service file:

[Service]
...
LimitCORE=infinity
LimitNOFILE=65535

Or update the global settings in the /etc/systemd/system.conf file:

[Manager]
...
DefaultLimitCORE=infinity
DefaultLimitNOFILE=65535

Then reload the service configuration and restart Angie to reproduce the crash conditions:

$ sudo systemctl daemon-reload
$ sudo systemctl restart angie.service

After the crash, find the core dump file:

$ sudo coredumpctl -1 # optional

TIME PID UID GID SIG COREFILE EXE
--- 2025-07-03 11:05:40 GMT 1157 0 0 11 present /usr/sbin/angie

$ sudo ls -al /var/lib/systemd/coredump/ # default, see also /etc/systemd/coredump.
→˓conf and /etc/systemd/coredump.conf.d/*.conf

...
-rw-r----- 1 root root 177662 Jul 27 11:05 core.angie.0.

→˓6135489c850b4fb4a74795ebbc1e382a.1157.1590577472000000.lz4

4.2.2 Linux: Manual Configuration
Check the core dump settings in the /etc/security/limits.conf file, modify them if necessary:

root soft core 0 # by default disables core dumps
root hard core unlimited # allows increasing the size limit

Then increase the core dump size limit using ulimit, then restart Angie to reproduce the crash conditions:

$ sudo ulimit -c unlimited
$ sudo cd <path to Angie installation directory>
$ sudo sbin/angie # or sbin/angie-debug

After the crash, find the core dump file:

$ sudo ls -al <path to Angie working directory> # default, see /proc/sys/kernel/core_
→˓pattern
...
-rw-r----- 1 root root 177662 Jul 27 11:05 core.1157

4.2. Core Dumps 469

https://www.freedesktop.org/software/systemd/man/systemd.exec.html#Process%20Properties
https://www.freedesktop.org/software/systemd/man/systemd-system.conf.html
https://man7.org/linux/man-pages/man5/limits.conf.5.html
https://man7.org/linux/man-pages/man1/ulimit.1p.html

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

4.2.3 FreeBSD
Check the core dump settings in the /etc/sysctl.conf file, modify them if necessary:

kern.coredump=1 # should be 1
kern.corefile=/path/to/core/files/%N.core # needs correct path

Or update the settings at runtime:

$ sudo sysctl kern.coredump=1
$ sudo sysctl kern.corefile=/path/to/core/files/%N.core

Then restart Angie to reproduce the crash conditions. If Angie is installed as a service:

$ sudo service angie restart

If Angie is installed manually:

$ sudo cd <path to Angie installation directory>
$ sudo sbin/angie

After the crash, find the core dump file:

$ sudo ls -al <path to core dump files>

...
-rw------- 1 root root 9912320 Jul 27 11:05 angie.core

4.2. Core Dumps 470

https://man.freebsd.org/cgi/man.cgi?query=sysctl.conf&sektion=5

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

CHAPTER 5

Intellectual Property Rights

The documentation for the Angie PRO software product is the intellectual property of Web Server, LLC.
The documentation was created as a result of modification (revision) of the documentation for the nginx
software product.

471

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

Index

A
absolute_redirect (http), 291
accept_mutex (core), 20
accept_mutex_delay (core), 20
access_log (http), 129
access_log (stream), 342
acme (http), 30
acme (stream), 330
acme_client (http), 30
acme_client_path (http), 32
acme_dns_port (http), 32
acme_hook (http), 33
add_after_body (http), 35
add_before_body (http), 35
add_header (http), 113
add_trailer (http), 113
addition_types (http), 35
aio (http), 292
aio_write (http), 293
alias (http), 293
allow (http), 29
allow (stream), 329
ancient_browser (http), 71
ancient_browser_value (http), 71
api (http), 35
api_config_files (http), 37
auth_basic (http), 66
auth_basic_user_file (http), 66
auth_delay (http), 293
auth_http, 400
auth_http_header, 400
auth_http_pass_client_cert, 400
auth_http_timeout, 401
auth_request (http), 67
auth_request_set (http), 67
auto_redirect (http), 294
autoindex (http), 68
autoindex_exact_size (http), 68
autoindex_format (http), 68
autoindex_localtime (http), 70

B
backup_switch (http), 242

backup_switch (stream), 378
bind_conn (http), 243
break (http), 198

C
charset (http), 72
charset_map (http), 73
charset_types (http), 73
chunked_transfer_encoding (http), 294
client (http), 294
client_body_buffer_size (http), 295
client_body_in_file_only (http), 295
client_body_in_single_buffer (http), 295
client_body_temp_path (http), 295
client_body_timeout (http), 295
client_header_buffer_size (http), 296
client_header_timeout (http), 296
client_max_body_size (http), 296
connection_pool_size (http), 296
create_full_put_path (http), 75

D
daemon (core), 20
dav_access (http), 75
dav_methods (http), 75
debug_connection (core), 20
debug_points (core), 21
default_type (http), 297
deny (http), 29
deny (stream), 329
directio (http), 297
directio_alignment (http), 297
disable_symlinks (http), 297
docker_endpoint (http), 78
docker_max_object_size (http), 79

E
empty_gif (http), 80
env (core), 21
error_log (core), 22
error_page (http), 298
etag (http), 299
events (core), 22

472

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

expires (http), 114

F
fastcgi_bind (http), 80
fastcgi_buffer_size (http), 81
fastcgi_buffering (http), 81
fastcgi_buffers (http), 81
fastcgi_busy_buffers_size (http), 81
fastcgi_cache (http), 82
fastcgi_cache_background_update (http), 82
fastcgi_cache_bypass (http), 82
fastcgi_cache_key (http), 82
fastcgi_cache_lock (http), 83
fastcgi_cache_lock_age (http), 83
fastcgi_cache_lock_timeout (http), 83
fastcgi_cache_max_range_offset (http), 83
fastcgi_cache_methods (http), 83
fastcgi_cache_min_uses (http), 83
fastcgi_cache_path (http), 84
fastcgi_cache_revalidate (http), 85
fastcgi_cache_use_stale (http), 85
fastcgi_cache_valid (http), 86
fastcgi_catch_stderr (http), 86
fastcgi_connect_timeout (http), 87
fastcgi_connection_drop (http), 87
fastcgi_force_ranges (http), 87
fastcgi_hide_header (http), 87
fastcgi_ignore_client_abort (http), 88
fastcgi_ignore_headers (http), 88
fastcgi_index (http), 88
fastcgi_intercept_errors (http), 89
fastcgi_keep_conn (http), 89
fastcgi_limit_rate (http), 89
fastcgi_max_temp_file_size (http), 89
fastcgi_next_upstream (http), 90
fastcgi_next_upstream_timeout (http), 90
fastcgi_next_upstream_tries (http), 91
fastcgi_no_cache (http), 91
fastcgi_param (http), 91
fastcgi_pass (http), 92
fastcgi_pass_header (http), 92
fastcgi_pass_request_body (http), 92
fastcgi_pass_request_headers (http), 92
fastcgi_read_timeout (http), 93
fastcgi_request_buffering (http), 93
fastcgi_send_lowat (http), 93
fastcgi_send_timeout (http), 93
fastcgi_socket_keepalive (http), 94
fastcgi_split_path_info (http), 94
fastcgi_store (http), 94
fastcgi_store_access (http), 95
fastcgi_temp_file_write_size (http), 95
fastcgi_temp_path (http), 95
feedback (http), 243
feedback (stream), 379
flv (http), 97

G
geo (http), 97
geo (stream), 331
geoip_city (http), 99
geoip_city (stream), 333
geoip_country (http), 99
geoip_country (stream), 333
geoip_org (http), 100
geoip_org (stream), 334
geoip_proxy (http), 100
geoip_proxy_recursive (http), 100
google_perftools_profiles, 420
grpc_bind (http), 101
grpc_buffer_size (http), 101
grpc_connect_timeout (http), 102
grpc_connection_drop (http), 102
grpc_hide_header (http), 102
grpc_ignore_headers (http), 102
grpc_intercept_errors (http), 102
grpc_next_upstream (http), 103
grpc_next_upstream_timeout (http), 104
grpc_next_upstream_tries (http), 104
grpc_pass (http), 104
grpc_pass_header (http), 104
grpc_read_timeout (http), 105
grpc_send_timeout (http), 105
grpc_set_header (http), 105
grpc_socket_keepalive (http), 105
grpc_ssl_certificate (http), 106
grpc_ssl_certificate_cache (http), 106
grpc_ssl_certificate_key (http), 106
grpc_ssl_ciphers (http), 106
grpc_ssl_conf_command (http), 107
grpc_ssl_crl (http), 107
grpc_ssl_name (http), 107
grpc_ssl_password_file (http), 108
grpc_ssl_protocols (http), 108
grpc_ssl_server_name (http), 108
grpc_ssl_session_reuse (http), 108
grpc_ssl_trusted_certificate (http), 108
grpc_ssl_verify (http), 109
grpc_ssl_verify_depth (http), 109
gunzip (http), 109
gunzip_buffers (http), 109
gzip (http), 110
gzip_buffers (http), 110
gzip_comp_level (http), 110
gzip_disable (http), 111
gzip_http_version (http), 111
gzip_min_length (http), 111
gzip_proxied (http), 111
gzip_static (http), 113
gzip_types (http), 112
gzip_vary (http), 112

H
hash (http), 245
hash (stream), 380

Index 473

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

http (http), 299
http2 (http), 284
http2_body_preread_size (http), 284
http2_chunk_size (http), 284
http2_max_concurrent_pushes (http), 284
http2_max_concurrent_streams (http), 285
http2_push (http), 285
http2_push_preload (http), 285
http2_recv_buffer_size (http), 285
http3 (http), 287
http3_hq (http), 287
http3_max_concurrent_streams (http), 287
http3_max_table_capacity (http), 287
http3_stream_buffer_size (http), 288

I
if (http), 198
if_modified_since (http), 299
ignore_invalid_headers (http), 300
image_filter (http), 115
image_filter_buffer (http), 116
image_filter_interlace (http), 116
image_filter_jpeg_quality (http), 116
image_filter_sharpen (http), 116
image_filter_transparency (http), 116
image_filter_webp_quality (http), 116
imap_auth, 403
imap_capabilities, 403
imap_client_buffer, 404
include (core), 22
index (http), 117
internal (http), 300
ip_hash (http), 245

J
js_access (stream), 336
js_body_filter (http), 119
js_content (http), 120
js_fetch_buffer_size (http), 120
js_fetch_buffer_size (stream), 336
js_fetch_ciphers (http), 120
js_fetch_ciphers (stream), 336
js_fetch_max_response_buffer_size (http), 120
js_fetch_max_response_buffer_size (stream),

336
js_fetch_protocols (http), 121
js_fetch_protocols (stream), 336
js_fetch_timeout (http), 121
js_fetch_timeout (stream), 337
js_fetch_trusted_certificate (http), 121
js_fetch_trusted_certificate (stream), 337
js_fetch_verify (http), 121
js_fetch_verify (stream), 337
js_fetch_verify_depth (http), 121
js_fetch_verify_depth (stream), 337
js_filter (stream), 337
js_header_filter (http), 121
js_import (http), 122

js_import (stream), 338
js_path (http), 122
js_path (stream), 338
js_preload_object (http), 122
js_preload_object (stream), 338
js_preread (stream), 338
js_set (http), 123
js_set (stream), 339
js_shared_dict_zone (http), 123
js_shared_dict_zone (stream), 339
js_var (http), 124
js_var (stream), 340

K
keepalive (http), 245
keepalive_disable (http), 300
keepalive_requests (http), 247, 301
keepalive_time (http), 247, 301
keepalive_timeout (http), 247, 301

L
large_client_header_buffers (http), 301
least_conn (http), 248
least_conn (stream), 380
least_time (http), 248
least_time (stream), 380
limit_conn (http), 125
limit_conn (stream), 341
limit_conn_dry_run (http), 125
limit_conn_dry_run (stream), 341
limit_conn_log_level (http), 125
limit_conn_log_level (stream), 341
limit_conn_status (http), 126
limit_conn_zone (http), 126
limit_conn_zone (stream), 342
limit_except (http), 302
limit_rate (http), 302
limit_rate_after (http), 303
limit_req (http), 127
limit_req_dry_run (http), 128
limit_req_log_level (http), 128
limit_req_status (http), 128
limit_req_zone (http), 128
lingering_close (http), 303
lingering_time (http), 303
lingering_timeout (http), 303
listen, 416
listen (http), 304
listen (stream), 390
load, 423
load_module (core), 23
location (http), 307
lock_file (core), 23
log_format (http), 130
log_format (stream), 343
log_not_found (http), 309
log_subrequest (http), 309

Index 474

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

M
mail, 417
map (http), 132
map (stream), 344
map_hash_bucket_size (http), 133
map_hash_bucket_size (stream), 346
map_hash_max_size (http), 133
map_hash_max_size (stream), 346
master_process (core), 23
max_commands, 417
max_errors, 418
max_headers (http), 309
max_ranges (http), 309
memcached_bind (http), 134
memcached_buffer_size (http), 134
memcached_connect_timeout (http), 134
memcached_gzip_flag (http), 134
memcached_next_upstream (http), 135
memcached_next_upstream_timeout (http), 135
memcached_next_upstream_tries (http), 135
memcached_pass (http), 136
memcached_read_timeout (http), 136
memcached_send_timeout (http), 136
memcached_socket_keepalive (http), 136
merge_slashes (http), 309
min_delete_depth (http), 75
mirror (http), 137
mirror_request_body (http), 137
modern_browser (http), 71
modern_browser_value (http), 72
mp4 (http), 139
mp4_buffer_size (http), 139
mp4_limit_rate (http), 139
mp4_limit_rate_after (http), 140
mp4_max_buffer_size (http), 139
mp4_start_key_frame (http), 140
mqtt_preread (stream), 346
msie_padding (http), 310
msie_refresh (http), 310
multi_accept (core), 23

O
open_file_cache (http), 310
open_file_cache_errors (http), 311
open_file_cache_min_uses (http), 311
open_file_cache_valid (http), 311
open_log_file_cache (http), 131
open_log_file_cache (stream), 344
output_buffers (http), 311
override_charset (http), 73

P
pass (stream), 348
pcre_jit (core), 24
perl (http), 142
perl_modules (http), 142
perl_require (http), 142
perl_set (http), 142

pid (core), 24
pop3_auth, 404
pop3_capabilities, 404
port_in_redirect (http), 311
postpone_output (http), 312
preread_buffer_size (stream), 393
preread_timeout (stream), 393
prometheus (http), 163
prometheus_template (http), 163
protocol, 418
proxy_bind (http), 166
proxy_bind (stream), 348
proxy_buffer, 405
proxy_buffer_size (http), 166
proxy_buffer_size (stream), 349
proxy_buffering (http), 166
proxy_buffers (http), 167
proxy_busy_buffers_size (http), 167
proxy_cache (http), 167
proxy_cache_background_update (http), 168
proxy_cache_bypass (http), 168
proxy_cache_convert_head (http), 169
proxy_cache_key (http), 169
proxy_cache_lock (http), 169
proxy_cache_lock_age (http), 169
proxy_cache_lock_timeout (http), 169
proxy_cache_max_range_offset (http), 170
proxy_cache_methods (http), 170
proxy_cache_min_uses (http), 170
proxy_cache_path (http), 170
proxy_cache_revalidate (http), 172
proxy_cache_use_stale (http), 172
proxy_cache_valid (http), 173
proxy_connect_timeout (http), 174
proxy_connect_timeout (stream), 349
proxy_connection_drop (http), 174
proxy_connection_drop (stream), 349
proxy_cookie_domain (http), 175
proxy_cookie_flags (http), 175
proxy_cookie_path (http), 176
proxy_download_rate (stream), 349
proxy_force_ranges (http), 176
proxy_half_close (stream), 350
proxy_headers_hash_bucket_size (http), 176
proxy_headers_hash_max_size (http), 177
proxy_hide_header (http), 177
proxy_http3_hq (http), 177
proxy_http3_max_concurrent_streams (http),

177
proxy_http3_max_table_capacity (http), 178
proxy_http3_stream_buffer_size (http), 178
proxy_http_version (http), 177
proxy_ignore_client_abort (http), 178
proxy_ignore_headers (http), 178
proxy_intercept_errors (http), 179
proxy_limit_rate (http), 179
proxy_max_temp_file_size (http), 179
proxy_method (http), 180

Index 475

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

proxy_next_upstream (http), 180
proxy_next_upstream (stream), 350
proxy_next_upstream_timeout (http), 181
proxy_next_upstream_timeout (stream), 350
proxy_next_upstream_tries (http), 181
proxy_next_upstream_tries (stream), 351
proxy_no_cache (http), 181
proxy_pass (http), 181
proxy_pass (stream), 351
proxy_pass_error_message, 405
proxy_pass_header (http), 183
proxy_pass_request_body (http), 183
proxy_pass_request_headers (http), 183
proxy_pass_trailers (http), 183
proxy_protocol, 405
proxy_protocol (stream), 351
proxy_protocol_timeout (stream), 393
proxy_quic_active_connection_id_limit

(http), 184
proxy_quic_gso (http), 184
proxy_quic_host_key (http), 184
proxy_read_timeout (http), 184
proxy_redirect (http), 185
proxy_request_buffering (http), 186
proxy_requests (stream), 351
proxy_responses (stream), 352
proxy_send_lowat (http), 186
proxy_send_timeout (http), 186
proxy_set_body (http), 187
proxy_set_header (http), 187
proxy_smtp_auth, 405
proxy_socket_keepalive (http), 187
proxy_socket_keepalive (stream), 352
proxy_ssl (stream), 352
proxy_ssl_certificate (http), 188
proxy_ssl_certificate (stream), 352
proxy_ssl_certificate_cache (http), 188
proxy_ssl_certificate_key (http), 189
proxy_ssl_certificate_key (stream), 353
proxy_ssl_ciphers (http), 189
proxy_ssl_ciphers (stream), 353
proxy_ssl_conf_command (http), 189
proxy_ssl_conf_command (stream), 354
proxy_ssl_crl (http), 190
proxy_ssl_crl (stream), 354
proxy_ssl_name (http), 190
proxy_ssl_name (stream), 354
proxy_ssl_ntls (http), 190
proxy_ssl_ntls (stream), 354
proxy_ssl_password_file (http), 191
proxy_ssl_password_file (stream), 355
proxy_ssl_protocols (http), 191
proxy_ssl_protocols (stream), 355
proxy_ssl_server_name (http), 191
proxy_ssl_server_name (stream), 355
proxy_ssl_session_reuse (http), 191
proxy_ssl_session_reuse (stream), 356
proxy_ssl_trusted_certificate (http), 192

proxy_ssl_trusted_certificate (stream), 356
proxy_ssl_verify (http), 192
proxy_ssl_verify (stream), 356
proxy_ssl_verify_depth (http), 192
proxy_ssl_verify_depth (stream), 356
proxy_store (http), 192
proxy_store_access (http), 193
proxy_temp_file_write_size (http), 193
proxy_temp_path (http), 194
proxy_timeout, 405
proxy_timeout (stream), 356
proxy_upload_rate (stream), 357

Q
queue (http), 248
quic_active_connection_id_limit (http), 288
quic_bpf (http), 288
quic_gso (http), 288
quic_host_key (http), 288
quic_retry (http), 289

R
random (http), 249
random (stream), 381
random_index (http), 195
rdp_preread (stream), 358
read_ahead (http), 312
real_ip_header (http), 195
real_ip_recursive (http), 196
recursive_error_pages (http), 312
referer_hash_bucket_size (http), 196
referer_hash_max_size (http), 197
request_pool_size (http), 312
reset_timedout_connection (http), 312
resolver, 418
resolver (http), 313
resolver (stream), 393
resolver_timeout, 419
resolver_timeout (http), 314
resolver_timeout (stream), 394
response_time_factor (http), 249
response_time_factor (stream), 381
return (http), 199
return (stream), 359
rewrite (http), 199
rewrite_log (http), 200
root (http), 314

S
satisfy (http), 314
scgi_bind (http), 202
scgi_buffer_size (http), 202
scgi_buffering (http), 203
scgi_buffers (http), 203
scgi_busy_buffers_size (http), 203
scgi_cache (http), 203
scgi_cache_background_update (http), 204
scgi_cache_bypass (http), 204

Index 476

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

scgi_cache_key (http), 204
scgi_cache_lock (http), 204
scgi_cache_lock_age (http), 205
scgi_cache_lock_timeout (http), 205
scgi_cache_max_range_offset (http), 205
scgi_cache_methods (http), 205
scgi_cache_min_uses (http), 205
scgi_cache_path (http), 205
scgi_cache_revalidate (http), 207
scgi_cache_use_stale (http), 207
scgi_cache_valid (http), 207
scgi_connect_timeout (http), 208
scgi_connection_drop (http), 208
scgi_force_ranges (http), 209
scgi_hide_header (http), 209
scgi_ignore_client_abort (http), 209
scgi_ignore_headers (http), 209
scgi_intercept_errors (http), 210
scgi_limit_rate (http), 210
scgi_max_temp_file_size (http), 210
scgi_next_upstream (http), 211
scgi_next_upstream_timeout (http), 211
scgi_next_upstream_tries (http), 212
scgi_no_cache (http), 212
scgi_param (http), 212
scgi_pass (http), 213
scgi_pass_header (http), 213
scgi_pass_request_body (http), 213
scgi_pass_request_headers (http), 213
scgi_read_timeout (http), 213
scgi_request_buffering (http), 214
scgi_send_timeout (http), 214
scgi_socket_keepalive (http), 214
scgi_store (http), 214
scgi_store_access (http), 215
scgi_temp_file_write_size (http), 216
scgi_temp_path (http), 216
secure_link (http), 216
secure_link_md5 (http), 217
secure_link_secret (http), 218
send_lowat (http), 314
send_timeout (http), 315
sendfile (http), 315
sendfile_max_chunk (http), 315
server, 419
server (http), 250, 315
server (stream), 375, 394
server_name, 419
server_name (http), 316
server_name (stream), 394
server_name_in_redirect (http), 317
server_names_hash_bucket_size (http), 318
server_names_hash_bucket_size (stream), 395
server_names_hash_max_size (http), 318
server_names_hash_max_size (stream), 396
server_tokens (http), 318
set (http), 200
set (stream), 359

set_real_ip_from, 406
set_real_ip_from (http), 195
set_real_ip_from (stream), 358
slice (http), 219
smtp_auth, 407
smtp_capabilities, 407
smtp_client_buffer, 407
smtp_greeting_delay, 407
source_charset (http), 74
split_clients (http), 220
split_clients (stream), 360
ssi (http), 221
ssi_last_modified (http), 221
ssi_min_file_chunk (http), 221
ssi_silent_errors (http), 221
ssi_types (http), 221
ssi_value_length (http), 221
ssl_alpn (stream), 361
ssl_buffer_size (http), 226
ssl_certificate, 409
ssl_certificate (http), 226
ssl_certificate (stream), 361
ssl_certificate_cache (http), 227
ssl_certificate_key, 409
ssl_certificate_key (http), 228
ssl_certificate_key (stream), 362
ssl_ciphers, 409
ssl_ciphers (http), 228
ssl_ciphers (stream), 363
ssl_client_certificate, 410
ssl_client_certificate (http), 229
ssl_client_certificate (stream), 363
ssl_conf_command, 410
ssl_conf_command (http), 229
ssl_conf_command (stream), 363
ssl_crl, 410
ssl_crl (http), 229
ssl_crl (stream), 364
ssl_dhparam, 411
ssl_dhparam (http), 230
ssl_dhparam (stream), 364
ssl_early_data (http), 230
ssl_early_data (stream), 364
ssl_ecdh_curve, 411
ssl_ecdh_curve (http), 230
ssl_ecdh_curve (stream), 364
ssl_engine (core), 24
ssl_handshake_timeout (stream), 365
ssl_ntls (http), 230
ssl_ntls (stream), 366
ssl_object_cache_inheritable (core), 25
ssl_ocsp (http), 231
ssl_ocsp (stream), 365
ssl_ocsp_cache (http), 231
ssl_ocsp_cache (stream), 365
ssl_ocsp_responder (http), 231
ssl_ocsp_responder (stream), 366
ssl_password_file, 411

Index 477

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

ssl_password_file (http), 232
ssl_password_file (stream), 366
ssl_prefer_server_ciphers, 412
ssl_prefer_server_ciphers (http), 232
ssl_prefer_server_ciphers (stream), 367
ssl_preread (stream), 374
ssl_protocols, 412
ssl_protocols (http), 232
ssl_protocols (stream), 367
ssl_reject_handshake (http), 233
ssl_session_cache, 412
ssl_session_cache (http), 233
ssl_session_cache (stream), 367
ssl_session_ticket_key, 413
ssl_session_ticket_key (http), 234
ssl_session_ticket_key (stream), 368
ssl_session_tickets, 413
ssl_session_tickets (http), 234
ssl_session_tickets (stream), 368
ssl_session_timeout, 413
ssl_session_timeout (http), 234
ssl_session_timeout (stream), 368
ssl_stapling (http), 235
ssl_stapling (stream), 369
ssl_stapling_file (http), 235
ssl_stapling_file (stream), 369
ssl_stapling_responder (http), 235
ssl_stapling_responder (stream), 369
ssl_stapling_verify (http), 235
ssl_stapling_verify (stream), 369
ssl_trusted_certificate, 414
ssl_trusted_certificate (http), 236
ssl_trusted_certificate (stream), 370
ssl_verify_client, 414
ssl_verify_client (http), 236
ssl_verify_client (stream), 370
ssl_verify_depth, 414
ssl_verify_depth (http), 236
ssl_verify_depth (stream), 370
starttls, 414
state (http), 252
state (stream) ((stream upstream module),

377
status_zone (http), 318
status_zone (stream), 396
sticky (http), 253
sticky (stream), 382
sticky_secret (http), 257
sticky_secret (stream), 385
sticky_strict (http), 257
sticky_strict (stream), 385
stream (stream), 397
stub_status (http), 239
sub_filter (http), 241
sub_filter_last_modified (http), 241
sub_filter_once (http), 241
sub_filter_types (http), 241
subrequest_output_buffer_size (http), 319

T
tcp_nodelay (http), 320
tcp_nodelay (stream), 397
tcp_nopush (http), 320
thread_pool (core), 25
timeout, 419
timer_resolution (core), 25
try_files (http), 320
types (http), 322
types_hash_bucket_size (http), 322
types_hash_max_size (http), 323

U
underscores_in_headers (http), 323
uninitialized_variable_warn (http), 200
upstream (http), 257
upstream (stream), 375
upstream_probe (http), 261
upstream_probe (stream), 388
upstream_probe_timeout (stream), 356
use (core), 26
user (core), 26
userid (http), 263
userid_domain (http), 263
userid_expires (http), 264
userid_flags (http), 264
userid_mark (http), 264
userid_name (http), 264
userid_p3p (http), 264
userid_path (http), 265
userid_service (http), 265
uwsgi_bind (http), 266
uwsgi_buffer_size (http), 266
uwsgi_buffering (http), 266
uwsgi_buffers (http), 267
uwsgi_busy_buffers_size (http), 267
uwsgi_cache (http), 267
uwsgi_cache_background_update (http), 267
uwsgi_cache_bypass (http), 267
uwsgi_cache_key (http), 268
uwsgi_cache_lock (http), 268
uwsgi_cache_lock_age (http), 268
uwsgi_cache_lock_timeout (http), 268
uwsgi_cache_max_range_offset (http), 269
uwsgi_cache_methods (http), 269
uwsgi_cache_min_uses (http), 269
uwsgi_cache_path (http), 269
uwsgi_cache_revalidate (http), 270
uwsgi_cache_use_stale (http), 270
uwsgi_cache_valid (http), 271
uwsgi_connect_timeout (http), 272
uwsgi_connection_drop (http), 272
uwsgi_force_ranges (http), 272
uwsgi_hide_header (http), 272
uwsgi_ignore_client_abort (http), 273
uwsgi_ignore_headers (http), 273
uwsgi_intercept_errors (http), 273
uwsgi_limit_rate (http), 273

Index 478

Web Server, LLC, OGRN 1227700436578, INN 9704151517
ul. Vyatskaya, d. 27, str. 7, Moscow, Russia, 127015

User Guide, version 1.10.0

uwsgi_max_temp_file_size (http), 274
uwsgi_modifier1 (http), 274
uwsgi_modifier2 (http), 274
uwsgi_next_upstream (http), 275
uwsgi_next_upstream_timeout (http), 275
uwsgi_next_upstream_tries (http), 276
uwsgi_no_cache (http), 276
uwsgi_param (http), 276
uwsgi_pass (http), 276
uwsgi_pass_header (http), 277
uwsgi_pass_request_body (http), 277
uwsgi_pass_request_headers (http), 277
uwsgi_read_timeout (http), 277
uwsgi_request_buffering (http), 278
uwsgi_send_timeout (http), 278
uwsgi_socket_keepalive (http), 278
uwsgi_ssl_certificate (http), 278
uwsgi_ssl_certificate_cache (http), 279
uwsgi_ssl_certificate_key (http), 279
uwsgi_ssl_ciphers (http), 279
uwsgi_ssl_conf_command (http), 280
uwsgi_ssl_crl (http), 280
uwsgi_ssl_name (http), 280
uwsgi_ssl_password_file (http), 281
uwsgi_ssl_protocols (http), 281
uwsgi_ssl_server_name (http), 281
uwsgi_ssl_session_reuse (http), 281
uwsgi_ssl_trusted_certificate (http), 281
uwsgi_ssl_verify (http), 281
uwsgi_ssl_verify_depth (http), 282
uwsgi_store (http), 282
uwsgi_store_access (http), 283
uwsgi_temp_file_write_size (http), 283
uwsgi_temp_path (http), 283

V
valid_referers (http), 197
variables_hash_bucket_size (http), 323
variables_hash_bucket_size (stream), 397
variables_hash_max_size (http), 323
variables_hash_max_size (stream), 397

W
wamr_global_heap_size, 421
wamr_heap_size, 421
wamr_stack_size, 421
wasm_modules, 423
wasmtime_enable_wasi, 422
wasmtime_stack_size, 422
worker_aio_requests (core), 26
worker_connections (core), 26
worker_cpu_affinity (core), 26
worker_priority (core), 27
worker_processes (core), 27
worker_rlimit_core (core), 28
worker_rlimit_nofile (core), 28
worker_shutdown_timeout (core), 28
working_directory (core), 28

X
xclient, 406
xml_entities (http), 290
xslt_last_modified (http), 290
xslt_param (http), 290
xslt_string_param (http), 290
xslt_stylesheet (http), 291
xslt_types (http), 291

Z
zone (http), 258
zone (stream), 378

Index 479

	Annotation
	General Information
	Configuration
	General Information
	Configuration Files
	Inheritance
	Syntax
	Measurement Units
	Directives

	Setting up Hashes
	Reloading Configuration

	Runtime Control
	Using Signals
	Changing Configuration
	Rotating Log Files
	On-the-fly Executable Upgrade
	Command-Line Options

	Connections, Sessions, Requests, Logs
	Connection processing mechanisms
	HTTP request processing
	TCP/UDP session processing
	Processing requests
	Virtual server selection
	Name-based virtual servers
	Internationalized names
	Preventing requests with undefined server names
	Combining name-based and IP-based virtual servers
	Choosing locations

	Proxying and Load Balancing
	FastCGI Proxying
	WebSocket Proxying
	Load Balancing

	Logging
	Syslog

	References and Indexes
	Built-in Modules
	Core Module
	Configuration Example
	Directives
	accept_mutex
	accept_mutex_delay
	daemon
	debug_connection
	debug_points
	env
	error_log
	events
	include
	load_module
	lock_file
	master_process
	multi_accept
	pcre_jit
	pid
	ssl_engine
	ssl_object_cache_inheritable
	thread_pool
	timer_resolution
	use
	user
	worker_aio_requests
	worker_connections
	worker_cpu_affinity
	worker_priority
	worker_processes
	worker_rlimit_core
	worker_rlimit_nofile
	worker_shutdown_timeout
	working_directory

	HTTP Module
	Access
	Configuration Example
	Directives
	allow
	deny

	ACME
	Configuration Example
	Directives
	acme
	acme_client
	acme_client_path
	acme_dns_port
	acme_hook
	Built-in Variables
	$acme_cert_<name>
	$acme_cert_key_<name>
	$acme_hook_challenge
	$acme_hook_client
	$acme_hook_domain
	$acme_hook_keyauth
	$acme_hook_name
	$acme_hook_token

	Addition
	Configuration Example
	Directives
	add_before_body
	add_after_body
	addition_types

	API
	Directives
	api
	api_config_files
	Metrics
	Example configuration
	Server status
	/status/angie
	Connections
	/status/connections
	Shared memory zones with slab allocation
	/status/slabs/<zone>
	DNS queries to resolver
	/status/resolvers/<zone>
	HTTP server and location
	/status/http/server_zones/<zone>
	/status/http/location_zones/<zone>
	Stream server
	/status/stream/server_zones/<zone>
	HTTP caches
	/status/http/caches/<cache>
	limit_conn
	/status/http/limit_conns/<zone>, /status/stream/limit_conns/<zone>
	limit_req
	/status/http/limit_reqs/<zone>
	HTTP upstream
	/status/http/upstreams/<upstream>
	health/probes (PRO)
	queue (PRO)
	Stream upstream
	/status/stream/upstreams/<upstream>
	Dynamic Configuration API (PRO only)
	Subsections of /config
	/config/http/upstreams/<upstream>/servers/<name>
	/config/stream/upstreams/<upstream>/servers/<name>
	HTTP Methods
	GET
	PUT
	DELETE
	PATCH

	Auth Basic
	Configuration Example
	Directives
	auth_basic
	auth_basic_user_file

	Auth Request
	Configuration Example
	Directives
	auth_request
	auth_request_set

	AutoIndex
	Configuration Example
	Directives
	autoindex
	autoindex_exact_size
	autoindex_format
	autoindex_localtime

	Browser
	Variables
	$modern_browser
	$ancient_browser
	$msie
	Configuration Example
	Choosing an index file:
	Redirection for old browsers:
	Directives
	ancient_browser
	ancient_browser_value
	modern_browser
	modern_browser_value

	Charset
	Configuration Example
	Directives
	charset
	charset_map
	charset_types
	override_charset
	source_charset

	DAV
	Configuration Example
	Directives
	create_full_put_path
	dav_access
	dav_methods
	min_delete_depth

	Docker
	Configuration Example
	Labels
	Directives
	docker_endpoint
	docker_max_object_size

	Empty GIF
	Configuration Example
	Directives
	empty_gif

	FastCGI
	Configuration Example
	Directives
	fastcgi_bind
	fastcgi_buffer_size
	fastcgi_buffering
	fastcgi_buffers
	fastcgi_busy_buffers_size
	fastcgi_cache
	fastcgi_cache_background_update
	fastcgi_cache_bypass
	fastcgi_cache_key
	fastcgi_cache_lock
	fastcgi_cache_lock_age
	fastcgi_cache_lock_timeout
	fastcgi_cache_max_range_offset
	fastcgi_cache_methods
	fastcgi_cache_min_uses
	fastcgi_cache_path
	fastcgi_cache_revalidate
	fastcgi_cache_use_stale
	fastcgi_cache_valid
	fastcgi_catch_stderr
	fastcgi_connect_timeout
	fastcgi_connection_drop
	fastcgi_force_ranges
	fastcgi_hide_header
	fastcgi_ignore_client_abort
	fastcgi_ignore_headers
	fastcgi_index
	fastcgi_intercept_errors
	fastcgi_keep_conn
	fastcgi_limit_rate
	fastcgi_max_temp_file_size
	fastcgi_next_upstream
	fastcgi_next_upstream_timeout
	fastcgi_next_upstream_tries
	fastcgi_no_cache
	fastcgi_param
	fastcgi_pass
	fastcgi_pass_header
	fastcgi_pass_request_body
	fastcgi_pass_request_headers
	fastcgi_read_timeout
	fastcgi_request_buffering
	fastcgi_send_lowat
	fastcgi_send_timeout
	fastcgi_socket_keepalive
	fastcgi_split_path_info
	fastcgi_store
	fastcgi_store_access
	fastcgi_temp_file_write_size
	fastcgi_temp_path
	Parameters Passed to a FastCGI Server
	Built-in Variables
	$fastcgi_script_name
	$fastcgi_path_info

	FLV
	Configuration Example
	Directives
	flv

	Geo
	Configuration Example
	Directives
	geo

	GeoIP
	Configuration Example
	Directives
	geoip_country
	geoip_city
	geoip_org
	geoip_proxy
	geoip_proxy_recursive

	gRPC
	Configuration Example
	Directives
	grpc_bind
	grpc_buffer_size
	grpc_connect_timeout
	grpc_connection_drop
	grpc_hide_header
	grpc_ignore_headers
	grpc_intercept_errors
	grpc_next_upstream
	grpc_next_upstream_timeout
	grpc_next_upstream_tries
	grpc_pass
	grpc_pass_header
	grpc_read_timeout
	grpc_send_timeout
	grpc_set_header
	grpc_socket_keepalive
	grpc_ssl_certificate
	grpc_ssl_certificate_cache
	grpc_ssl_certificate_key
	grpc_ssl_ciphers
	grpc_ssl_conf_command
	grpc_ssl_crl
	grpc_ssl_name
	grpc_ssl_password_file
	grpc_ssl_protocols
	grpc_ssl_server_name
	grpc_ssl_session_reuse
	grpc_ssl_trusted_certificate
	grpc_ssl_verify
	grpc_ssl_verify_depth

	GunZIP
	Configuration Example
	Directives
	gunzip
	gunzip_buffers

	GZip
	Configuration Example
	Directives
	gzip
	gzip_buffers
	gzip_comp_level
	gzip_disable
	gzip_http_version
	gzip_min_length
	gzip_proxied
	gzip_types
	gzip_vary
	Built-in Variables
	$gzip_ratio

	GZip Static
	Configuration Example
	Directives
	gzip_static

	Headers
	Configuration Example
	Directives
	add_header
	add_trailer
	expires

	Image Filter
	Configuration Example
	Directives
	image_filter
	image_filter_buffer
	image_filter_interlace
	image_filter_jpeg_quality
	image_filter_sharpen
	image_filter_transparency
	image_filter_webp_quality

	Index
	Configuration Example
	Directives
	index

	JS
	Configuration Example
	Directives
	js_body_filter
	js_content
	js_fetch_buffer_size
	js_fetch_ciphers
	js_fetch_max_response_buffer_size
	js_fetch_protocols
	js_fetch_timeout
	js_fetch_trusted_certificate
	js_fetch_verify
	js_fetch_verify_depth
	js_header_filter
	js_import
	js_path
	js_preload_object
	js_set
	js_shared_dict_zone
	js_var
	Request Argument

	Limit Conn
	Configuration Example
	Directives
	limit_conn
	limit_conn_dry_run
	limit_conn_log_level
	limit_conn_status
	limit_conn_zone
	Built-in Variables
	$limit_conn_status

	Limit Req
	Configuration Example
	Directives
	limit_req
	limit_req_dry_run
	limit_req_log_level
	limit_req_status
	limit_req_zone
	Built-in Variables
	$limit_req_status

	Log
	Configuration Example
	Directives
	access_log
	log_format
	open_log_file_cache

	Map
	Configuration Example
	Directives
	map
	map_hash_bucket_size
	map_hash_max_size

	Memcached
	Configuration Example
	Directives
	memcached_bind
	memcached_buffer_size
	memcached_connect_timeout
	memcached_gzip_flag
	memcached_next_upstream
	memcached_next_upstream_timeout
	memcached_next_upstream_tries
	memcached_pass
	memcached_read_timeout
	memcached_send_timeout
	memcached_socket_keepalive
	Built-in Variables
	$memcached_key

	Mirror
	Configuration Example
	Directives
	mirror
	mirror_request_body

	MP4
	Configuration Example
	Directives
	mp4
	mp4_buffer_size
	mp4_max_buffer_size
	mp4_limit_rate
	mp4_limit_rate_after
	mp4_start_key_frame

	Perl
	Known Issues
	Configuration Example
	Directives
	perl
	perl_modules
	perl_require
	perl_set
	Calling Perl from SSI
	The $r Request Object Methods
	$r->args
	$r->filename
	$r->has_request_body (handler)
	$r->allow_ranges
	$r->discard_request_body
	$r->header_in (field)
	$r->header_only
	$r->header_out (field, value)
	$r->internal_redirect (uri)
	$r->log_error (errno, message)
	$r->print (text, ...)
	$r->request_body
	$r->request_body_file
	$r->request_method
	$r->remote_addr
	$r->flush
	$r->sendfile (name [, offset [, length]])
	$r->send_http_header ([type])
	$r->status (code)
	$r->sleep (milliseconds, handler)
	$r->unescape (text)
	$r->uri
	$r->variable (name [, value])

	Prometheus
	Configuration Example
	Directives
	prometheus
	prometheus_template
	Built-in Variables
	$p8s_value

	Proxy
	Configuration Example
	Directives
	proxy_bind
	proxy_buffer_size
	proxy_buffering
	proxy_buffers
	proxy_busy_buffers_size
	proxy_cache
	proxy_cache_background_update
	proxy_cache_bypass
	proxy_cache_convert_head
	proxy_cache_key
	proxy_cache_lock
	proxy_cache_lock_age
	proxy_cache_lock_timeout
	proxy_cache_max_range_offset
	proxy_cache_methods
	proxy_cache_min_uses
	proxy_cache_path
	proxy_cache_revalidate
	proxy_cache_use_stale
	proxy_cache_valid
	proxy_connect_timeout
	proxy_connection_drop
	proxy_cookie_domain
	proxy_cookie_flags
	proxy_cookie_path
	proxy_force_ranges
	proxy_headers_hash_bucket_size
	proxy_headers_hash_max_size
	proxy_hide_header
	proxy_http_version
	proxy_http3_hq
	proxy_http3_max_concurrent_streams
	proxy_http3_max_table_capacity
	proxy_http3_stream_buffer_size
	proxy_ignore_client_abort
	proxy_ignore_headers
	proxy_intercept_errors
	proxy_limit_rate
	proxy_max_temp_file_size
	proxy_method
	proxy_next_upstream
	proxy_next_upstream_timeout
	proxy_next_upstream_tries
	proxy_no_cache
	proxy_pass
	proxy_pass_header
	proxy_pass_request_body
	proxy_pass_request_headers
	proxy_pass_trailers
	proxy_quic_active_connection_id_limit
	proxy_quic_gso
	proxy_quic_host_key
	proxy_read_timeout
	proxy_redirect
	proxy_request_buffering
	proxy_send_lowat
	proxy_send_timeout
	proxy_set_body
	proxy_set_header
	proxy_socket_keepalive
	proxy_ssl_certificate
	proxy_ssl_certificate_cache
	proxy_ssl_certificate_key
	proxy_ssl_ciphers
	proxy_ssl_conf_command
	proxy_ssl_crl
	proxy_ssl_name
	proxy_ssl_ntls
	proxy_ssl_password_file
	proxy_ssl_protocols
	proxy_ssl_server_name
	proxy_ssl_session_reuse
	proxy_ssl_trusted_certificate
	proxy_ssl_verify
	proxy_ssl_verify_depth
	proxy_store
	proxy_store_access
	proxy_temp_file_write_size
	proxy_temp_path
	Built-in Variables
	$proxy_host
	$proxy_port
	$proxy_add_x_forwarded_for

	Random Index
	Configuration Example
	Directives
	random_index

	RealIP
	Configuration Example
	Directives
	set_real_ip_from
	real_ip_header
	real_ip_recursive
	Built-in Variables
	$realip_remote_addr
	$realip_remote_port

	Referer
	Configuration Example
	Directives
	referer_hash_bucket_size
	referer_hash_max_size
	valid_referers
	Built-in Variables
	$invalid_referer

	Rewrite
	Directives
	break
	if
	return
	rewrite
	rewrite_log
	set
	uninitialized_variable_warn
	Internal Implementation

	SCGI
	Configuration Example
	Directives
	scgi_bind
	scgi_buffer_size
	scgi_buffering
	scgi_buffers
	scgi_busy_buffers_size
	scgi_cache
	scgi_cache_background_update
	scgi_cache_bypass
	scgi_cache_key
	scgi_cache_lock
	scgi_cache_lock_age
	scgi_cache_lock_timeout
	scgi_cache_max_range_offset
	scgi_cache_methods
	scgi_cache_min_uses
	scgi_cache_path
	scgi_cache_revalidate
	scgi_cache_use_stale
	scgi_cache_valid
	scgi_connect_timeout
	scgi_connection_drop
	scgi_force_ranges
	scgi_hide_header
	scgi_ignore_client_abort
	scgi_ignore_headers
	scgi_intercept_errors
	scgi_limit_rate
	scgi_max_temp_file_size
	scgi_next_upstream
	scgi_next_upstream_timeout
	scgi_next_upstream_tries
	scgi_no_cache
	scgi_param
	scgi_pass
	scgi_pass_header
	scgi_pass_request_body
	scgi_pass_request_headers
	scgi_read_timeout
	scgi_request_buffering
	scgi_send_timeout
	scgi_socket_keepalive
	scgi_store
	scgi_store_access
	scgi_temp_file_write_size
	scgi_temp_path

	Secure Link
	Directives
	secure_link
	secure_link_md5
	secure_link_secret
	Built-in Variables
	$secure_link
	$secure_link_expires

	Slice
	Configuration Example
	Directives
	slice
	Built-in Variables
	$slice_range

	Split Clients
	Configuration Example
	Directives
	split_clients

	SSI
	Configuration Example
	Directives
	ssi
	ssi_last_modified
	ssi_min_file_chunk
	ssi_silent_errors
	ssi_types
	ssi_value_length
	SSI Commands
	block
	name
	config
	errmsg
	timefmt
	echo
	var
	encoding
	default
	if
	expr
	include
	file
	virtual
	stub
	wait
	set
	set
	var
	value
	Built-in Variables
	$date_local
	$date_gmt

	SSL
	Configuration Example
	Directives
	ssl_buffer_size
	ssl_certificate
	ssl_certificate_cache
	ssl_certificate_key
	ssl_ciphers
	ssl_client_certificate
	ssl_conf_command
	ssl_crl
	ssl_dhparam
	ssl_early_data
	ssl_ecdh_curve
	ssl_ntls
	ssl_ocsp
	ssl_ocsp_cache
	ssl_ocsp_responder
	ssl_password_file
	ssl_prefer_server_ciphers
	ssl_protocols
	ssl_reject_handshake
	ssl_session_cache
	ssl_session_ticket_key
	ssl_session_tickets
	ssl_session_timeout
	ssl_stapling
	ssl_stapling_file
	ssl_stapling_responder
	ssl_stapling_verify
	ssl_trusted_certificate
	ssl_verify_client
	ssl_verify_depth
	Error Processing
	Built-in Variables
	$ssl_alpn_protocol
	$ssl_cipher
	$ssl_ciphers
	$ssl_client_escaped_cert
	$ssl_client_fingerprint
	$ssl_client_i_dn
	$ssl_client_i_dn_legacy
	$ssl_client_raw_cert
	$ssl_client_s_dn
	$ssl_client_s_dn_legacy
	$ssl_client_serial
	$ssl_client_v_end
	$ssl_client_v_remain
	$ssl_client_v_start
	$ssl_client_verify
	$ssl_curve
	$ssl_curves
	$ssl_early_data
	$ssl_protocol
	$ssl_server_cert_type
	$ssl_server_name
	$ssl_session_id
	$ssl_session_reused

	Stub Status
	Configuration Example
	Directives
	stub_status
	Data
	Active connections
	accepts
	handled
	requests
	Reading
	Writing
	Waiting
	Built-in Variables
	$connections_active
	$connections_reading
	$connections_writing
	$connections_waiting

	Sub
	Configuration Example
	Directives
	sub_filter
	sub_filter_last_modified
	sub_filter_once
	sub_filter_types

	Upstream
	Configuration Example
	Directives
	backup_switch (PRO)
	bind_conn (PRO)
	feedback (PRO)
	hash
	ip_hash
	keepalive
	keepalive_requests
	keepalive_time
	keepalive_timeout
	least_conn
	least_time (PRO)
	queue (PRO)
	random
	response_time_factor (PRO)
	server
	state (PRO)
	sticky
	sticky_secret
	sticky_strict
	upstream
	zone
	Built-in Variables
	$sticky_sessid
	$sticky_sid
	$upstream_addr
	$upstream_bytes_received
	$upstream_bytes_sent
	$upstream_cache_status
	$upstream_connect_time
	$upstream_cookie_<name>
	$upstream_header_time
	$upstream_http_<name>
	$upstream_queue_time
	$upstream_response_length
	$upstream_response_time
	$upstream_status
	$upstream_sticky_status
	$upstream_trailer_<name>

	Upstream Probe
	Configuration Example
	Directives
	upstream_probe (PRO)
	Built-in Variables
	$upstream_probe (PRO)
	$upstream_probe_body (PRO)

	UserID
	Configuration Example
	Directives
	userid
	userid_domain
	userid_expires
	userid_flags
	userid_mark
	userid_name
	userid_p3p
	userid_path
	userid_service
	Built-in Variables
	$uid_got
	$uid_reset
	$uid_set

	uWSGI
	Configuration Example
	Directives
	uwsgi_bind
	uwsgi_buffer_size
	uwsgi_buffering
	uwsgi_buffers
	uwsgi_busy_buffers_size
	uwsgi_cache
	uwsgi_cache_background_update
	uwsgi_cache_bypass
	uwsgi_cache_key
	uwsgi_cache_lock
	uwsgi_cache_lock_age
	uwsgi_cache_lock_timeout
	uwsgi_cache_max_range_offset
	uwsgi_cache_methods
	uwsgi_cache_min_uses
	uwsgi_cache_path
	uwsgi_cache_revalidate
	uwsgi_cache_use_stale
	uwsgi_cache_valid
	uwsgi_connect_timeout
	uwsgi_connection_drop
	uwsgi_force_ranges
	uwsgi_hide_header
	uwsgi_ignore_client_abort
	uwsgi_ignore_headers
	uwsgi_intercept_errors
	uwsgi_limit_rate
	uwsgi_max_temp_file_size
	uwsgi_modifier1
	uwsgi_modifier2
	uwsgi_next_upstream
	uwsgi_next_upstream_timeout
	uwsgi_next_upstream_tries
	uwsgi_no_cache
	uwsgi_param
	uwsgi_pass
	uwsgi_pass_header
	uwsgi_pass_request_body
	uwsgi_pass_request_headers
	uwsgi_read_timeout
	uwsgi_request_buffering
	uwsgi_send_timeout
	uwsgi_socket_keepalive
	uwsgi_ssl_certificate
	uwsgi_ssl_certificate_cache
	uwsgi_ssl_certificate_key
	uwsgi_ssl_ciphers
	uwsgi_ssl_conf_command
	uwsgi_ssl_crl
	uwsgi_ssl_name
	uwsgi_ssl_password_file
	uwsgi_ssl_protocols
	uwsgi_ssl_server_name
	uwsgi_ssl_session_reuse
	uwsgi_ssl_trusted_certificate
	uwsgi_ssl_verify
	uwsgi_ssl_verify_depth
	uwsgi_store
	uwsgi_store_access
	uwsgi_temp_file_write_size
	uwsgi_temp_path

	HTTP/2
	Configuration Example
	Directives
	http2
	http2_body_preread_size
	http2_chunk_size
	http2_max_concurrent_pushes
	http2_max_concurrent_streams
	http2_push
	http2_push_preload
	http2_recv_buffer_size
	Built-in Variables
	$http2

	HTTP/3
	Configuration Example
	Directives
	http3
	http3_hq
	http3_max_concurrent_streams
	http3_max_table_capacity
	http3_stream_buffer_size
	quic_active_connection_id_limit
	quic_bpf
	quic_gso
	quic_host_key
	quic_retry
	Built-in Variables
	$http3
	$quic_connection

	XSLT
	Configuration Example
	Directives
	xml_entities
	xslt_last_modified
	xslt_param
	xslt_string_param
	xslt_stylesheet
	xslt_types

	Directives
	absolute_redirect
	aio
	aio_write
	alias
	auth_delay
	auto_redirect
	chunked_transfer_encoding
	client
	client_body_buffer_size
	client_body_in_file_only
	client_body_in_single_buffer
	client_body_temp_path
	client_body_timeout
	client_header_buffer_size
	client_header_timeout
	client_max_body_size
	connection_pool_size
	default_type
	directio
	directio_alignment
	disable_symlinks
	error_page
	etag
	http
	if_modified_since
	ignore_invalid_headers
	internal
	keepalive_disable
	keepalive_requests
	keepalive_time
	keepalive_timeout
	large_client_header_buffers
	limit_except
	limit_rate
	limit_rate_after
	lingering_close
	lingering_time
	lingering_timeout
	listen
	location
	Combined locations
	log_not_found
	log_subrequest
	max_headers
	max_ranges
	merge_slashes
	msie_padding
	msie_refresh
	open_file_cache
	open_file_cache_errors
	open_file_cache_min_uses
	open_file_cache_valid
	output_buffers
	port_in_redirect
	postpone_output
	read_ahead
	recursive_error_pages
	request_pool_size
	reset_timedout_connection
	resolver
	resolver_timeout
	root
	satisfy
	send_lowat
	send_timeout
	sendfile
	sendfile_max_chunk
	server
	server_name
	server_name_in_redirect
	server_names_hash_bucket_size
	server_names_hash_max_size
	server_tokens
	status_zone
	subrequest_output_buffer_size
	tcp_nodelay
	tcp_nopush
	try_files
	types
	types_hash_bucket_size
	types_hash_max_size
	underscores_in_headers
	variables_hash_bucket_size
	variables_hash_max_size

	Built-in Variables
	$angie_version
	$arg_<name>
	$args
	$binary_remote_addr
	$body_bytes_sent
	$bytes_sent
	$connection
	$connection_requests
	$connection_time
	$content_length
	$content_type
	$cookie_<name>
	$document_root
	$document_uri
	$host
	$hostname
	$http_<name>
	$https
	$is_args
	$limit_rate
	$msec
	$pid
	$pipe
	$proxy_protocol_addr
	$proxy_protocol_port
	$proxy_protocol_server_addr
	$proxy_protocol_server_port
	$proxy_protocol_tlv_<name>
	$query_string
	$realpath_root
	$remote_addr
	$remote_port
	$remote_user
	$request
	$request_body
	$request_body_file
	$request_completion
	$request_filename
	$request_id
	$request_length
	$request_method
	$request_time
	$request_uri
	$scheme
	$sent_http_<name>
	$sent_trailer_<name>
	$server_addr
	$server_name
	$server_port
	$server_protocol
	$status
	$time_iso8601
	$time_local
	$tcpinfo_rtt, $tcpinfo_rttvar, $tcpinfo_snd_cwnd, $tcpinfo_rcv_space
	$uri

	Stream Module
	Access
	Configuration Example
	Directives
	allow
	deny

	ACME
	Configuration Example
	Directives
	acme
	Embedded Variables
	$acme_cert_<name>
	$acme_cert_key_<name>

	Geo
	Configuration Example
	Directives
	geo

	GeoIP
	Configuration Example
	Directives
	geoip_country
	geoip_city
	geoip_org

	JS
	Configuration Example
	Directives
	js_access
	js_fetch_buffer_size
	js_fetch_ciphers
	js_fetch_max_response_buffer_size
	js_fetch_protocols
	js_fetch_timeout
	js_fetch_trusted_certificate
	js_fetch_verify
	js_fetch_verify_depth
	js_filter
	js_import
	js_path
	js_preload_object
	js_preread
	js_set
	js_shared_dict_zone
	js_var
	Session Object Properties

	Limit Conn
	Configuration Example
	Directives
	limit_conn
	limit_conn_dry_run
	limit_conn_log_level
	limit_conn_zone
	Built-in Variables
	$limit_conn_status

	Log
	Configuration Example
	Directives
	access_log
	log_format
	open_log_file_cache

	Map
	Configuration Example
	Directives
	map
	map_hash_bucket_size
	map_hash_max_size

	MQTT Preread
	Configuration Example
	Choosing a server in a group by client ID:
	Directives
	mqtt_preread
	Built-in Variables
	$mqtt_preread_clientid
	$mqtt_preread_username

	Pass
	Configuration Example
	Directives
	pass

	Proxy
	Configuration Example
	Directives
	proxy_bind
	proxy_buffer_size
	proxy_connect_timeout
	proxy_connection_drop
	proxy_download_rate
	proxy_half_close
	proxy_next_upstream
	proxy_next_upstream_timeout
	proxy_next_upstream_tries
	proxy_pass
	proxy_protocol
	proxy_requests
	proxy_responses
	proxy_socket_keepalive
	proxy_ssl
	proxy_ssl_certificate
	proxy_ssl_certificate_key
	proxy_ssl_ciphers
	proxy_ssl_conf_command
	proxy_ssl_crl
	proxy_ssl_name
	proxy_ssl_ntls
	proxy_ssl_password_file
	proxy_ssl_protocols
	proxy_ssl_server_name
	proxy_ssl_session_reuse
	proxy_ssl_trusted_certificate
	proxy_ssl_verify
	proxy_ssl_verify_depth
	proxy_timeout
	upstream_probe_timeout (PRO)
	proxy_upload_rate

	RDP Preread
	Configuration Example
	Binding to the Cookie-Issuing Server
	Directives
	rdp_preread
	Built-in Variables
	$rdp_cookie
	$rdp_cookie_<name>

	RealIP
	Configuration Example
	Directives
	set_real_ip_from
	Built-in Variables
	$realip_remote_addr
	$realip_remote_port

	Return
	Configuration Example
	Directives
	return

	Set
	Configuration Example
	Directives
	set

	Split Clients
	Configuration Example
	Directives
	split_clients

	SSL
	Configuration Example
	Directives
	ssl_alpn
	ssl_certificate
	ssl_certificate_key
	ssl_ciphers
	ssl_client_certificate
	ssl_conf_command
	ssl_crl
	ssl_dhparam
	ssl_early_data
	ssl_ecdh_curve
	ssl_handshake_timeout
	ssl_ocsp
	ssl_ocsp_cache
	ssl_ocsp_responder
	ssl_ntls
	ssl_password_file
	ssl_prefer_server_ciphers
	ssl_protocols
	ssl_session_cache
	ssl_session_ticket_key
	ssl_session_tickets
	ssl_session_timeout
	ssl_stapling
	ssl_stapling_file
	ssl_stapling_responder
	ssl_stapling_verify
	ssl_trusted_certificate
	ssl_verify_client
	ssl_verify_depth
	Built-in Variables
	$ssl_alpn_protocol
	$ssl_cipher
	$ssl_ciphers
	$ssl_client_cert
	$ssl_client_fingerprint
	$ssl_client_i_dn
	$ssl_client_raw_cert
	$ssl_client_s_dn
	$ssl_client_serial
	$ssl_client_v_end
	$ssl_client_v_remain
	$ssl_client_v_start
	$ssl_client_verify
	$ssl_curve
	$ssl_curves
	$ssl_early_data
	$ssl_protocol
	$ssl_server_cert_type
	$ssl_server_name
	$ssl_session_id
	$ssl_session_reused

	SSL Preread
	Configuration Example
	Selecting an upstream by server name
	Selecting a server by protocol
	Selecting a server by SSL protocol version
	Directives
	ssl_preread
	Built-in Variables
	$ssl_preread_protocol
	$ssl_preread_server_name
	$ssl_preread_alpn_protocols

	Upstream
	Configuration Example
	Directives
	upstream
	server
	state (PRO)
	zone
	backup_switch (PRO)
	feedback (PRO)
	hash
	least_conn
	least_time (PRO)
	random
	response_time_factor (PRO)
	sticky
	sticky_strict
	sticky_secret
	Built-in Variables
	$sticky_sessid
	$sticky_sid
	$upstream_addr
	$upstream_bytes_received
	$upstream_bytes_sent
	$upstream_connect_time
	$upstream_first_byte_time
	$upstream_session_time
	$upstream_sticky_status

	Upstream Probe
	Configuration Example
	Directives
	upstream_probe (PRO)
	Built-in Variables
	$upstream_probe (PRO)
	$upstream_probe_response (PRO)

	Configuration Example
	Directives
	listen
	preread_buffer_size
	preread_timeout
	proxy_protocol_timeout
	resolver
	resolver_timeout
	server
	server_name
	server_names_hash_bucket_size
	server_names_hash_max_size
	status_zone
	stream
	tcp_nodelay
	variables_hash_bucket_size
	variables_hash_max_size

	Built-in Variables
	$angie_version
	$binary_remote_addr
	$bytes_received
	$bytes_sent
	$connection
	$hostname
	$msec
	$pid
	$protocol
	$proxy_protocol_addr
	$proxy_protocol_port
	$proxy_protocol_server_addr
	$proxy_protocol_server_port
	$proxy_protocol_tlv_<name>
	$remote_addr
	$remote_port
	$server_addr
	$server_port
	$session_time
	$status
	$time_iso8601
	$time_local

	Mail Module
	Auth HTTP
	Directives
	auth_http
	auth_http_header
	auth_http_pass_client_cert
	auth_http_timeout
	Protocol
	Examples of requests and responses:

	IMAP
	Directives
	imap_auth
	imap_capabilities
	imap_client_buffer

	POP3
	Directives
	pop3_auth
	pop3_capabilities

	Proxy
	Directives
	proxy_buffer
	proxy_pass_error_message
	proxy_protocol
	proxy_smtp_auth
	proxy_timeout
	xclient

	RealIP
	Configuration Example
	Directives
	set_real_ip_from

	SMTP
	Directives
	smtp_auth
	smtp_capabilities
	smtp_client_buffer
	smtp_greeting_delay

	SSL
	Configuration Example
	Directives
	ssl_certificate
	ssl_certificate_key
	ssl_ciphers
	ssl_client_certificate
	ssl_conf_command
	ssl_crl
	ssl_dhparam
	ssl_ecdh_curve
	ssl_password_file
	ssl_prefer_server_ciphers
	ssl_protocols
	ssl_session_cache
	ssl_session_ticket_key
	ssl_session_tickets
	ssl_session_timeout
	ssl_trusted_certificate
	ssl_verify_client
	ssl_verify_depth
	starttls

	Configuration Example
	Directives
	listen
	mail
	max_commands
	max_errors
	protocol
	resolver
	resolver_timeout
	server
	server_name
	timeout

	Google PerfTools Module
	Configuration Example
	Directives
	google_perftools_profiles

	WASM Module
	WAMR
	Configuration Example
	Directives
	wamr_heap_size
	wamr_global_heap_size
	wamr_stack_size

	Wasmtime
	Configuration Example
	Directives
	wasmtime_enable_wasi
	wasmtime_stack_size

	Configuration Example
	Directives
	load
	wasm_modules

	Core Module
	HTTP Modules
	Stream Modules
	Mail Modules
	Google PerfTools Module
	WASM Modules

	Built-in Variables
	Quick Access to Angie Directives and Variables
	HTTP and Core Directives
	Upstream Directives

	Stream Module Directives
	Upstream Directives

	Variables
	Additional Topics

	Instructions
	Migrating from nginx to Angie
	Installing Angie
	Updating Angie Configuration
	Virtual Hosts
	Dynamic Modules
	Root Directory (Optional)
	User and Group (Optional)
	Wrapping Up

	Testing and Switching
	Stopping nginx, Starting Angie
	Disabling nginx

	Configuring Angie Features

	ACME Configuration
	Configuration Steps
	Implementation Details
	HTTP Validation
	Configuration Example

	DNS Validation
	Configuration Example

	Hook-Based Validation
	Configuration Example

	ACME in Stream Module
	Configuration Example

	Migrating from certbot

	SSL Configuration
	HTTPS Server Optimization
	SSL Certificate Chains
	A Single HTTP/HTTPS Server
	Name-Based HTTPS Servers
	An SSL Certificate with Multiple Names
	Server Name Indication

	Console Light Web Monitoring Panel
	Console Light
	Version History
	Installation and Configuration
	Interface
	Angie Tab
	About Widget
	Connections Widget
	HTTP Zones Widget
	HTTP Upstreams Widget
	TCP/UDP Zones Widget
	TCP/UDP Upstreams Widget

	HTTP Zones Tab
	Server Zones Section
	Location Zones Section
	Connection Limit Zones (Limit Conn) Section
	Request Limit Zones (Limit Req) Section

	HTTP Upstreams Tab
	Editing upstreams

	TCP/UDP Zones Tab
	TCP/UDP Zones Section
	Connection Limit Zones (Limit Conn) Section

	TCP/UDP Upstreams Tab
	Editing upstreams

	Caches Tab
	Shared Zones Tab
	DNS Resolvers Tab
	Settings Widget
	Console Control Panel

	Configuring the Prometheus dashboard

	Troubleshooting
	Debug Logging
	Directive Location
	Logging Specific Addresses
	Cyclic Memory Buffer

	Core Dumps
	Linux: systemd
	Linux: Manual Configuration
	FreeBSD

	Intellectual Property Rights
	Index

